Suppr超能文献

用于早期检测食管癌的精准成像

Precision Imaging for Early Detection of Esophageal Cancer.

作者信息

Yang Po-Chun, Huang Chien-Wei, Karmakar Riya, Mukundan Arvind, Chen Tsung-Hsien, Chou Chu-Kuang, Yang Kai-Yao, Wang Hsiang-Chen

机构信息

Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan.

Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Lingya District, Kaohsiung City 80284, Taiwan.

出版信息

Bioengineering (Basel). 2025 Jan 20;12(1):90. doi: 10.3390/bioengineering12010090.

Abstract

Early detection of early-stage esophageal cancer (ECA) is crucial for timely intervention and improved treatment outcomes. Hyperspectral imaging (HSI) and artificial intelligence (AI) technologies offer promising avenues for enhancing diagnostic accuracy in this context. This study utilized a dataset comprising 3984 white light images (WLIs) and 3666 narrow-band images (NBIs). We employed the Yolov5 model, a state-of-the-art object detection algorithm, to predict early ECA based on the provided images. The dataset was divided into two subsets: RGB-WLIs and NBIs, and four distinct models were trained using these datasets. The experimental results revealed that the prediction performance of the training model was notably enhanced when using HSI compared to general NBI training. The HSI training model demonstrated an 8% improvement in accuracy, along with a 5-8% enhancement in precision and recall measures. Notably, the model trained with WLIs exhibited the most significant improvement. Integration of HSI with AI technologies improves the prediction performance for early ECA detection. This study underscores the potential of deep learning identification models to aid in medical detection research. Integrating these models with endoscopic diagnostic systems in healthcare settings could offer faster and more accurate results, thereby improving overall detection performance.

摘要

早期食管癌(ECA)的早期检测对于及时干预和改善治疗结果至关重要。在这种情况下,高光谱成像(HSI)和人工智能(AI)技术为提高诊断准确性提供了有前景的途径。本研究使用了一个包含3984张白光图像(WLI)和3666张窄带图像(NBI)的数据集。我们采用Yolov5模型,一种先进的目标检测算法,基于提供的图像预测早期ECA。该数据集被分为两个子集:RGB-WLI和NBI,并使用这些数据集训练了四个不同的模型。实验结果表明,与普通NBI训练相比,使用HSI时训练模型的预测性能显著提高。HSI训练模型的准确率提高了8%,精确率和召回率指标提高了5%-8%。值得注意的是,用WLI训练的模型表现出最显著的改进。HSI与AI技术的结合提高了早期ECA检测的预测性能。本研究强调了深度学习识别模型在医学检测研究中的潜力。将这些模型与医疗环境中的内镜诊断系统相结合可以提供更快、更准确的结果,从而提高整体检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a59/11762345/b5a4cbdf8f61/bioengineering-12-00090-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验