基于深度学习和相关滤波器的实时超声吞咽视频中舌骨自动跟踪。
Automatic Hyoid Bone Tracking in Real-Time Ultrasound Swallowing Videos Using Deep Learning Based and Correlation Filter Based Trackers.
机构信息
Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong.
Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong.
出版信息
Sensors (Basel). 2021 May 26;21(11):3712. doi: 10.3390/s21113712.
(1) Background: Ultrasound provides a radiation-free and portable method for assessing swallowing. Hyoid bone locations and displacements are often used as important indicators for the evaluation of swallowing disorders. However, this requires clinicians to spend a great deal of time reviewing the ultrasound images. (2) Methods: In this study, we applied tracking algorithms based on deep learning and correlation filters to detect hyoid locations in ultrasound videos collected during swallowing. Fifty videos were collected from 10 young, healthy subjects for training, evaluation, and testing of the trackers. (3) Results: The best performing deep learning algorithm, Fully-Convolutional Siamese Networks (SiamFC), proved to have reliable performance in getting accurate hyoid bone locations from each frame of the swallowing ultrasound videos. While having a real-time frame rate (175 fps) when running on an RTX 2060, SiamFC also achieved a precision of 98.9% at the threshold of 10 pixels (3.25 mm) and 80.5% at the threshold of 5 pixels (1.63 mm). The tracker's root-mean-square error and average error were 3.9 pixels (1.27 mm) and 3.3 pixels (1.07 mm), respectively. (4) Conclusions: Our results pave the way for real-time automatic tracking of the hyoid bone in ultrasound videos for swallowing assessment.
(1) 背景:超声提供了一种无辐射且便携的吞咽评估方法。舌骨的位置和移动通常被用作吞咽障碍评估的重要指标。然而,这需要临床医生花费大量时间来查看超声图像。(2) 方法:在这项研究中,我们应用基于深度学习和相关滤波器的跟踪算法来检测吞咽过程中采集的超声视频中的舌骨位置。从 10 名年轻健康的受试者中收集了 50 个视频,用于跟踪器的训练、评估和测试。(3) 结果:表现最好的深度学习算法——全卷积孪生网络(SiamFC),在从吞咽超声视频的每一帧中获取准确的舌骨位置方面表现出可靠的性能。当在 RTX 2060 上运行时,SiamFC 的帧率达到 175 fps,在 10 像素(3.25 毫米)的阈值下精度达到 98.9%,在 5 像素(1.63 毫米)的阈值下精度达到 80.5%。跟踪器的均方根误差和平均误差分别为 3.9 像素(1.27 毫米)和 3.3 像素(1.07 毫米)。(4) 结论:我们的研究结果为实时自动跟踪超声视频中的舌骨以进行吞咽评估铺平了道路。
相似文献
Int J Lang Commun Disord. 2022-5
Medicine (Baltimore). 2019-7
引用本文的文献
Front Med Technol. 2023-10-3
本文引用的文献
J Texture Stud. 2017-11-13
IEEE Trans Pattern Anal Mach Intell. 2016-6-6
IEEE Trans Image Process. 2016-3