Suppr超能文献

基于人工智能的视频内镜下有意义帧中误吸检测,以解释模型结果的视觉辅助。

AI-Based Detection of Aspiration for Video-Endoscopy with Visual Aids in Meaningful Frames to Interpret the Model Outcome.

机构信息

Institute of Physical Therapy, Prevention and Rehabilitation, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.

Department for Health Care & Nursing, Catholic University of Applied Sciences, 55122 Mainz, Germany.

出版信息

Sensors (Basel). 2022 Dec 4;22(23):9468. doi: 10.3390/s22239468.

Abstract

Disorders of swallowing often lead to pneumonia when material enters the airways (aspiration). Flexible Endoscopic Evaluation of Swallowing (FEES) plays a key role in the diagnostics of aspiration but is prone to human errors. An AI-based tool could facilitate this process. Recent non-endoscopic/non-radiologic attempts to detect aspiration using machine-learning approaches have led to unsatisfying accuracy and show black-box characteristics. Hence, for clinical users it is difficult to trust in these model decisions. Our aim is to introduce an explainable artificial intelligence (XAI) approach to detect aspiration in FEES. Our approach is to teach the AI about the relevant anatomical structures, such as the vocal cords and the glottis, based on 92 annotated FEES videos. Simultaneously, it is trained to detect boluses that pass the glottis and become aspirated. During testing, the AI successfully recognized the glottis and the vocal cords but could not yet achieve satisfying aspiration detection quality. While detection performance must be optimized, our architecture results in a final model that explains its assessment by locating meaningful frames with relevant aspiration events and by highlighting suspected boluses. In contrast to comparable AI tools, our framework is verifiable and interpretable and, therefore, accountable for clinical users.

摘要

吞咽障碍常导致异物进入气道(吸入)而引发肺炎。柔性内镜吞咽功能评估(FEES)在吸入的诊断中起着关键作用,但容易出现人为错误。基于人工智能的工具可以辅助这一过程。最近,一些使用机器学习方法来检测吸入的非内镜/非放射性尝试,其准确性令人不满意,且具有黑箱特性。因此,对于临床用户来说,很难相信这些模型的决策。我们的目标是引入一种可解释的人工智能(XAI)方法来检测 FEES 中的吸入。我们的方法是基于 92 个标注的 FEES 视频,教导人工智能识别相关的解剖结构,如声带和声门。同时,它还接受了检测通过声门并被吸入的食团的训练。在测试过程中,人工智能成功识别了声门和声带,但仍未能达到令人满意的吸入检测质量。虽然检测性能需要进一步优化,但我们的架构可以生成一个最终模型,该模型通过定位有相关吸入事件的有意义的帧并突出可疑的食团,来解释其评估结果。与类似的人工智能工具相比,我们的框架是可验证和可解释的,因此对临床用户是有责任的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da52/9736280/a18a613f83e8/sensors-22-09468-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验