Hsu Yu-Cheng, Tsai I-Jung, Hsu Hung, Hsu Po-Wen, Cheng Ming-Hui, Huang Ying-Li, Chen Jin-Hua, Lei Meng-Huan, Ling Ching-Yu
Cardiovascular Center, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan.
Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
Diagnostics (Basel). 2021 May 26;11(6):961. doi: 10.3390/diagnostics11060961.
Machine learning (ML) algorithms have been applied to predicting coronary artery disease (CAD). Our purpose was to utilize autoantibody isotypes against four different unmodified and malondialdehyde (MDA)-modified peptides among Taiwanese with CAD and healthy controls (HCs) for CAD prediction. In this study, levels of MDA, MDA-modified protein (MDA-protein) adducts, and autoantibody isotypes against unmodified peptides and MDA-modified peptides were measured with enzyme-linked immunosorbent assay (ELISA). To improve the performance of ML, we used decision tree (DT), random forest (RF), and support vector machine (SVM) coupled with five-fold cross validation and parameters optimization. Levels of plasma MDA and MDA-protein adducts were higher in CAD patients than in HCs. IgM anti-IGKC MDA and IgM anti-A1AT MDA decreased the most in patients with CAD compared to HCs. In the experimental results of CAD prediction, the decision tree classifier achieved an area under the curve (AUC) of 0.81; the random forest classifier achieved an AUC of 0.94; the support vector machine achieved an AUC of 0.65 for differentiating between CAD patients with stenosis rates of 70% and HCs. In this study, we demonstrated that autoantibody isotypes imported into machine learning algorithms can lead to accurate models for clinical use.
机器学习(ML)算法已被应用于预测冠状动脉疾病(CAD)。我们的目的是利用台湾CAD患者和健康对照(HC)针对四种不同的未修饰和丙二醛(MDA)修饰肽的自身抗体亚型来预测CAD。在本研究中,采用酶联免疫吸附测定(ELISA)测量MDA、MDA修饰蛋白(MDA-蛋白)加合物以及针对未修饰肽和MDA修饰肽的自身抗体亚型水平。为了提高ML的性能,我们使用决策树(DT)、随机森林(RF)和支持向量机(SVM)并结合五折交叉验证和参数优化。CAD患者血浆MDA和MDA-蛋白加合物水平高于HC。与HC相比,CAD患者中IgM抗IGKC MDA和IgM抗A1AT MDA下降最为明显。在CAD预测的实验结果中,决策树分类器的曲线下面积(AUC)为0.81;随机森林分类器的AUC为0.94;支持向量机在区分狭窄率为70%的CAD患者和HC时的AUC为0.65。在本研究中,我们证明导入机器学习算法的自身抗体亚型可产生适用于临床的准确模型。