Suppr超能文献

基于机器学习策略的区域人口预测与分析

Regional Population Forecast and Analysis Based on Machine Learning Strategy.

作者信息

Wang Chian-Yue, Lee Shin-Jye

机构信息

Graduate Institute of Urban Planning, National Taipei University, Taipei 237, Taiwan.

Institute of Management of Technology, National Chiao Tung University, Hsinchu 300, Taiwan.

出版信息

Entropy (Basel). 2021 May 24;23(6):656. doi: 10.3390/e23060656.

Abstract

Regional population forecast and analysis is of essence to urban and regional planning, and a well-designed plan can effectively construct a sound national infrastructure and stabilize positive population growth. Traditionally, either urban or regional planning relies on the opinions of demographers in terms of how the population of a city or a region will grow. Multi-regional population forecast is currently possible, carried out mainly on the basis of the Interregional Cohort-Component model. While this model has its unique advantages, several demographic rates are determined based on the decisions made by primary planners. Hence, the only drawback for cohort-component type population forecasting is allowing the analyst to specify the demographic rates of the future, and it goes without saying that this tends to introduce a biased result in forecasting accuracy. To effectively avoid this problem, this work proposes a machine learning-based method to forecast multi-regional population growth objectively. Thus, this work, drawing upon the newly developed machine learning technology, attempts to analyze and forecast the population growth of major cities in Taiwan. By effectively using the advantage of the XGBoost algorithm, the evaluation of feature importance and the forecast of multi-regional population growth between the present and the near future can be observed objectively, and it can further provide an objective reference to the urban planning of regional population.

摘要

区域人口预测与分析对城市和区域规划至关重要,精心设计的规划能够有效构建完善的国家基础设施并稳定积极的人口增长。传统上,无论是城市规划还是区域规划,在城市或区域人口如何增长方面都依赖人口统计学家的意见。目前多区域人口预测是可行的,主要基于区域间队列成分模型进行。虽然该模型有其独特优势,但几个人口统计率是根据主要规划者做出的决策确定的。因此,队列成分类型人口预测的唯一缺点是让分析师指定未来的人口统计率,不言而喻,这往往会在预测准确性上引入有偏差的结果。为有效避免此问题,这项工作提出一种基于机器学习的方法来客观预测多区域人口增长。因此,这项工作利用新开发的机器学习技术,试图分析和预测台湾主要城市的人口增长。通过有效利用XGBoost算法的优势,可以客观地观察特征重要性评估以及当前与近期之间的多区域人口增长预测,并且它可以进一步为区域人口的城市规划提供客观参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95fa/8225119/fadb7bc404a7/entropy-23-00656-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验