Suppr超能文献

如何选择最佳的肾脏肿块活组织检查候选人。

How to Select the Optimal Candidates for Renal Mass Biopsy.

机构信息

Unit of Urology, University Vita-Salute, San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Unit of Urology, University Vita-Salute, San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.

出版信息

Eur Urol Oncol. 2021 Jun;4(3):506-509. doi: 10.1016/j.euo.2020.10.001. Epub 2020 Oct 21.

Abstract

Surgical treatment of small renal masses (RMs) is still characterized by a non-negligible rate of benign histology, ultimately resulting in overtreatment. Since the risk of kidney cancer increases with age and the risk of malignancy usually increases with tumor size, we created a model based on patient age, RM size, and their interaction for predicting malignant histology. As male sex is associated with a higher risk of renal malignancy, we also stratified our analyses by sex. We used data for 2252 patients with cT1N0M0 disease (1551 male [69%], 701 female [31%]). On logistic regression, both age and RM size were predictors of malignant histology. For males, the odds ratio (OR) was 1.82 (95% confidence interval [CI] 1.78-2.80) for age and 2.04 (95% CI 1.69-2.47) for RM size; for females, the OR was 1.82 (95% CI 1.78-2.80) for age and 2.04 (95% CI 1.69-2.47) for RM size (all p ≤ 0.007), with a significant continuous-by-continuous interaction between them (p < 0.001) in both models. On decision curve analysis, the model demonstrated clinical utility for predicting malignancy at a probability of <55% for males and <60% for females. Individuals with lower probability should be considered for renal biopsy and those with higher probability for upfront surgery. The model was also more informative than RM size alone in predicting malignancy, which currently represents the only absolute criterion for active surveillance eligibility. PATIENT SUMMARY: In this study we analyzed the correlation between age and tumor size for predicting tumor malignancy. The aim in management is to balance the utility of performing a biopsy and the appropriateness of upfront surgery against the ultimate goal of decreasing overtreatment.

摘要

肾小肿瘤(RM)的外科治疗仍然具有相当比例的良性组织学,最终导致过度治疗。由于肾癌的风险随着年龄的增长而增加,并且恶性肿瘤的风险通常随着肿瘤大小的增加而增加,因此我们创建了一个基于患者年龄、RM 大小及其相互作用的模型来预测恶性组织学。由于男性的肾癌恶性风险较高,我们还按性别对分析进行了分层。我们使用了 2252 例 cT1N0M0 疾病患者的数据(男性 1551 例[69%],女性 701 例[31%])。在逻辑回归中,年龄和 RM 大小都是恶性组织学的预测因素。对于男性,年龄的比值比(OR)为 1.82(95%置信区间[CI]1.78-2.80),RM 大小的 OR 为 2.04(95%CI1.69-2.47);对于女性,年龄的 OR 为 1.82(95%CI1.78-2.80),RM 大小的 OR 为 2.04(95%CI1.69-2.47)(均 p≤0.007),两个模型中它们之间存在显著的连续与连续相互作用(p<0.001)。在决策曲线分析中,该模型在男性概率<55%和女性概率<60%时显示出预测恶性肿瘤的临床实用性。概率较低的个体应考虑进行肾活检,而概率较高的个体应考虑进行 upfront 手术。该模型在预测恶性肿瘤方面也比 RM 大小更具信息量,而 RM 大小目前是主动监测合格的唯一绝对标准。

患者总结

在这项研究中,我们分析了年龄和肿瘤大小与预测肿瘤恶性程度的相关性。管理的目的是在执行活检的效用和 upfront 手术的适当性与降低过度治疗的最终目标之间取得平衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验