Suppr超能文献

基于自组装凝胶的动态响应体系特异性识别 N-乙酰神经氨酸。

Self-assembly gel-based dynamic response system for specific recognition of -acetylneuraminic acid.

机构信息

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, P. R. China and Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.

Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.

出版信息

J Mater Chem B. 2021 Jun 16;9(23):4690-4699. doi: 10.1039/d1tb00627d.

Abstract

Sialic acids located at the terminal end of glycans are densely attached to cell surfaces and play crucial and distinctive roles in a variety of physiological and pathological processes, such as neural development, cell-cell interactions, autoimmunity and cancers. However, due to the subtle structural differences of sialic acid species and the complicated composition of glycans, the precise recognition of sialylated glycans is difficult. Here, a fluorescent dynamic response system based on a pyrene-conjugated histidine (PyHis) supramolecular gel is proposed. Driven by π-π stacking and intermolecular hydrogen bonds, PyHis exhibits a strong self-assembly ability and forms stable gels. It is found that introduction of N-acetylneuraminic acid (a typical sialic acid) can prevent this self-assembly process, whereas other monosaccharides or sialic acid analogs have no significant effect on it. Interestingly, a sialylated glycan also has a remarkable inhibitory effect on the gel formation, which highlights the high selectivity of the gel dynamic response system. Analysis of the mechanism reveals that the sialic acid or sialylated glycan can interact closely with two PyHis molecules stacked together in the assemblies via hydrogen bonding interactions, thereby preventing the ordered accumulation of the gelators. It is worth noting that the high-efficiency sialic acid recognition effect is not observed at the single molecule level but at the supramolecular level, indicating the unique superiority of the supramolecular self-assembly system in biomolecular recognition and response. This work shows the promising prospects of using supramolecular gels in assembly engineering, regenerative medicine, tumour cell sorting and cancer diagnosis.

摘要

唾液酸位于聚糖的末端,大量附着在细胞表面,在多种生理和病理过程中发挥着关键而独特的作用,如神经发育、细胞-细胞相互作用、自身免疫和癌症。然而,由于唾液酸种类的细微结构差异和聚糖的复杂组成,对唾液酸化聚糖的精确识别具有一定难度。在这里,我们提出了一种基于芘基偶联组氨酸(PyHis)超分子凝胶的荧光动态响应体系。在π-π堆积和分子间氢键的驱动下,PyHis 表现出很强的自组装能力,并形成稳定的凝胶。研究发现,引入 N-乙酰神经氨酸(一种典型的唾液酸)可以阻止这一自组装过程,而其他单糖或唾液酸类似物则没有显著影响。有趣的是,一个唾液酸化聚糖也对凝胶形成有显著的抑制作用,这突出了凝胶动态响应体系的高选择性。通过对机制的分析表明,唾液酸或唾液酸化聚糖可以通过氢键相互作用与堆积在一起的两个 PyHis 分子紧密相互作用,从而阻止凝胶剂的有序堆积。值得注意的是,高效的唾液酸识别效应不是在单个分子水平上观察到的,而是在超分子水平上观察到的,这表明超分子自组装体系在生物分子识别和响应方面具有独特的优势。这项工作展示了超分子凝胶在组装工程、再生医学、肿瘤细胞分选和癌症诊断方面的广阔前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验