Zhang Shuping, Zhuo Yifan, Ezugwu Chizoba I, Wang Chong-Chen, Li Chuanhao, Liu Shengwei
School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, P. R. China.
Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, P. R. China.
Environ Sci Technol. 2021 Jun 15;55(12):8341-8350. doi: 10.1021/acs.est.1c01277. Epub 2021 Jun 2.
Defective MIL-88B(Fe) nanorods are exploited as exemplary iron-bearing metal-organic framework (MOF) catalyst for molecular oxygen (O) activation at ambient temperature, triggering effective catalytic oxidation of formaldehyde (HCHO), one of the major indoor air pollutants. Defective MIL-88B(Fe) nanorods, growing along the [001] direction, expose abundant coordinatively unsaturated Fe-sites (Fe-CUSs) along extended hexagonal channels with a diameter of ca. 5 Å, larger enough for the diffusion of O (3.46 Å) and HCHO (2.7 Å). The Lewis acid-base interaction between Fe-CUSs and accessible HCHO accelerates the Fe/Fe cycle, catalyzing Fenton-like O activation to produce reactive oxidative species (ROSs), including superoxide radicals (•O), hydroxyl radicals (•OH), and singlet oxygen (O). Consequently, adsorbed HCHO can be oxidized into CO with a considerable mineralization efficiency (over 80%) and exceptional recyclability (4 runs, 48 h). Dioxymethylene (CHOO), formate (HCOO) species, and formyl radicals (•CHO) are recorded as the main reaction intermediates during HCHO oxidation. HCHO, HO, and O are captured and activated by abundant Fe/Fe-CUSs as acid/base and redox sites, triggering synergetic ROS generation and HCHO oxidation, involving cooperative acid-base and redox catalysis processes. This study will bring new insights into exploiting novel MOF catalysts for efficient O activation and reliable indoor air purification at ambient temperature.
缺陷型MIL-88B(Fe)纳米棒被用作典型的含铁金属有机框架(MOF)催化剂,用于在室温下活化分子氧(O),从而引发对主要室内空气污染物之一甲醛(HCHO)的有效催化氧化。沿[001]方向生长的缺陷型MIL-88B(Fe)纳米棒,在直径约为5 Å的延伸六边形通道中暴露了大量配位不饱和铁位点(Fe-CUSs),其尺寸足以让O(3.46 Å)和HCHO(2.7 Å)扩散。Fe-CUSs与可及的HCHO之间的路易斯酸碱相互作用加速了Fe/Fe循环,催化类芬顿O活化以产生活性氧化物种(ROSs),包括超氧自由基(•O)、羟基自由基(•OH)和单线态氧(O)。因此,吸附的HCHO可以被氧化为CO,具有相当高的矿化效率(超过80%)和出色的可回收性(4次运行,48小时)。二氧亚甲基(CHOO)、甲酸根(HCOO)物种和甲酰基自由基(•CHO)被记录为HCHO氧化过程中的主要反应中间体。HCHO、HO和O被大量的Fe/Fe-CUSs作为酸碱和氧化还原位点捕获并活化,引发协同ROS生成和HCHO氧化,涉及协同酸碱和氧化还原催化过程。这项研究将为开发用于在室温下高效活化O和可靠净化室内空气的新型MOF催化剂带来新的见解。