Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
Syngenta Crop Protection, Greensboro, North Carolina 27409, USA.
Toxicol Sci. 2021 Aug 3;182(2):243-259. doi: 10.1093/toxsci/kfab062.
Regulatory agencies are considering alternative approaches to assessing inhalation toxicity that utilizes in vitro studies with human cells and in silico modeling in lieu of additional animal studies. In support of this goal, computational fluid-particle dynamics models were developed to estimate site-specific deposition of inhaled aerosols containing the fungicide, chlorothalonil, in the rat and human for comparisons to prior rat inhalation studies and new human in vitro studies. Under bioassay conditions, the deposition was predicted to be greatest at the front of the rat nose followed by the anterior transitional epithelium and larynx corresponding to regions most sensitive to local contact irritation and cytotoxicity. For humans, simulations of aerosol deposition covering potential occupational or residential exposures (1-50 µm diameter) were conducted using nasal and oral breathing. Aerosols in the 1-5 µm range readily penetrated the deep region of the human lung following both oral and nasal breathing. Under actual use conditions (aerosol formulations >10 µm), the majority of deposited doses were in the upper conducting airways. Beyond the nose or mouth, the greatest deposition in the pharynx, larynx, trachea, and bronchi was predicted for aerosols in the 10-20 µm size range. Only small amounts of aerosols >20 µm penetrated past the pharyngeal region. Using the ICRP clearance model, local retained tissue dose metrics including maximal concentrations and areas under the curve were calculated for each airway region following repeated occupational exposures. These results are directly comparable with benchmark doses from in vitro toxicity studies in human cells leading to estimated human equivalent concentrations that reduce the reliance on animals for risk assessments.
监管机构正在考虑替代方法来评估吸入毒性,这些方法利用体外人类细胞研究和计算建模来替代额外的动物研究。为了支持这一目标,开发了计算流体-颗粒动力学模型,以估计含有杀菌剂百菌清的吸入性气溶胶在大鼠和人体中的特定部位沉积,以便与先前的大鼠吸入研究和新的人体体外研究进行比较。在生物测定条件下,预测沉积在大鼠鼻子前部最大,其次是前过渡上皮和喉,这与对局部接触刺激和细胞毒性最敏感的区域相对应。对于人类,使用鼻腔和口腔呼吸模拟了潜在职业或住宅暴露(1-50 µm 直径)的气溶胶沉积。在口腔和鼻腔呼吸后,1-5 µm 范围内的气溶胶很容易穿透人体肺部的深部区域。在实际使用条件下(气溶胶配方 >10 µm),大部分沉积剂量在上呼吸道。在鼻子或嘴之外,预测在咽部、喉部、气管和支气管中,沉积量最大的是 10-20 µm 大小范围的气溶胶。超过 20 µm 的气溶胶只有少量穿透咽部区域。使用 ICRP 清除模型,为每个气道区域计算了局部保留组织剂量指标,包括最大浓度和曲线下面积,这些指标是在重复职业暴露后计算的。这些结果可直接与人类细胞体外毒性研究的基准剂量进行比较,从而估计出人类等效浓度,减少了对动物进行风险评估的依赖。