Division of Genetics and Cell Biology, Tissue Regeneration and Homeostasis Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
Vita-Salute San Raffaele University, 20132 Milan, Italy.
Sci Transl Med. 2021 Jun 2;13(596). doi: 10.1126/scitranslmed.aay8416.
Muscular dystrophies (MDs) are a group of genetic diseases characterized by progressive muscle wasting associated to oxidative stress and persistent inflammation. It is essential to deepen our knowledge on the mechanism connecting these two processes because current treatments for MDs have limited efficacy and/or are associated with side effects. Here, we identified the alarmin high-mobility group box 1 (HMGB1) as a functional link between oxidative stress and inflammation in MDs. The oxidation of HMGB1 cysteines switches its extracellular activities from the orchestration of tissue regeneration to the exacerbation of inflammation. Extracellular HMGB1 is present at high amount and undergoes oxidation in patients with MDs and in mouse models of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy 3 (LGMDR3) compared to controls. Genetic ablation of HMGB1 in muscles of DMD mice leads to an amelioration of the dystrophic phenotype as evidenced by the reduced inflammation and muscle degeneration, indicating that HMGB1 oxidation is a detrimental process in MDs. Pharmacological treatment with an engineered nonoxidizable variant of HMGB1, called 3S, improves functional performance, muscle regeneration, and satellite cell engraftment in dystrophic mice while reducing inflammation and fibrosis. Overall, our data demonstrate that the balance between HMGB1 redox isoforms dictates whether skeletal muscle is in an inflamed or regenerating state, and that the nonoxidizable form of HMGB1 is a possible therapeutic approach to counteract the progression of the dystrophic phenotype. Rebalancing the HMGB1 redox isoforms may also be a therapeutic strategy for other disorders characterized by chronic oxidative stress and inflammation.
肌肉萎缩症(MDs)是一组以进行性肌肉萎缩为特征的遗传疾病,与氧化应激和持续炎症有关。深入了解将这两个过程联系起来的机制至关重要,因为目前治疗 MDs 的方法疗效有限,或者与副作用有关。在这里,我们确定高迁移率族蛋白 B1(HMGB1)作为氧化应激和 MDs 中炎症之间的功能联系。HMGB1 半胱氨酸的氧化将其细胞外活性从组织再生的协调转变为炎症的加剧。与对照组相比,MDs 患者和杜氏肌营养不良症(DMD)和肢带型肌营养不良症 3(LGMDR3)的小鼠模型中存在大量氧化的细胞外 HMGB1 并发生氧化。与 DMD 小鼠的肌肉相比,HMGB1 在肌肉中的基因缺失导致营养不良表型的改善,这表现为炎症和肌肉退化减少,表明 HMGB1 氧化是 MDs 中的一种有害过程。用称为 3S 的 HMGB1 的工程化不可氧化变体进行药理学治疗可改善营养不良小鼠的功能表现、肌肉再生和卫星细胞移植,同时减少炎症和纤维化。总体而言,我们的数据表明,HMGB1 氧化还原异构体之间的平衡决定了骨骼肌是处于炎症状态还是再生状态,并且不可氧化的 HMGB1 形式可能是对抗营养不良表型进展的一种治疗方法。重新平衡 HMGB1 氧化还原异构体也可能是其他以慢性氧化应激和炎症为特征的疾病的治疗策略。