Suppr超能文献

通过整合可穿戴设备、手机使用和自我报告数据识别出的特质样夜间睡眠行为。

Trait-like nocturnal sleep behavior identified by combining wearable, phone-use, and self-report data.

作者信息

Massar Stijn A A, Chua Xin Yu, Soon Chun Siong, Ng Alyssa S C, Ong Ju Lynn, Chee Nicholas I Y N, Lee Tih Shih, Ghosh Arko, Chee Michael W L

机构信息

Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Laboratory of Neurobehavioral Genomics, Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.

出版信息

NPJ Digit Med. 2021 Jun 2;4(1):90. doi: 10.1038/s41746-021-00466-9.

Abstract

Using polysomnography over multiple weeks to characterize an individual's habitual sleep behavior while accurate, is difficult to upscale. As an alternative, we integrated sleep measurements from a consumer sleep-tracker, smartphone-based ecological momentary assessment, and user-phone interactions in 198 participants for 2 months. User retention averaged >80% for all three modalities. Agreement in bed and wake time estimates across modalities was high (rho = 0.81-0.92) and were adrift of one another for an average of 4 min, providing redundant sleep measurement. On the ~23% of nights where discrepancies between modalities exceeded 1 h, k-means clustering revealed three patterns, each consistently expressed within a given individual. The three corresponding groups that emerged differed systematically in age, sleep timing, time in bed, and peri-sleep phone usage. Hence, contrary to being problematic, discrepant data across measurement modalities facilitated the identification of stable interindividual differences in sleep behavior, underscoring its utility to characterizing population sleep and peri-sleep behavior.

摘要

使用多导睡眠图持续数周来表征个体的习惯性睡眠行为,虽然准确,但难以扩大规模。作为一种替代方法,我们整合了来自消费者睡眠追踪器、基于智能手机的生态瞬时评估以及198名参与者在两个月内的用户-手机交互数据。所有三种方式的用户留存率平均>80%。不同方式之间在床上和起床时间估计的一致性很高(rho = 0.81 - 0.92),且彼此相差平均4分钟,提供了冗余的睡眠测量。在约23%的夜晚,不同方式之间的差异超过1小时,k均值聚类揭示了三种模式,每种模式在给定个体中持续表达。出现的三个相应组在年龄、睡眠时间、卧床时间和睡前手机使用方面存在系统性差异。因此,与存在问题相反,跨测量方式的差异数据有助于识别睡眠行为中稳定的个体间差异,突出了其在表征人群睡眠和睡前行为方面的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/014a/8172635/b660d247f3ae/41746_2021_466_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验