Schopp Nora, Nguyen Thuc-Quyen, Brus Viktor V
Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California Santa Barbara (UCSB), Santa Barbara, California 93106, United States.
Department of Physics, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan City 010000, Republic of Kazakhstan.
ACS Appl Mater Interfaces. 2021 Jun 16;13(23):27217-27226. doi: 10.1021/acsami.1c04036. Epub 2021 Jun 3.
Organic semiconductor devices, including organic photodetectors (OPDs) and organic photovoltaics (OPVs), have undergone vast improvements, thanks to the development of non-fullerene acceptors. The absorption range of such NFA-based systems is typically shifted toward the near-infrared (near-IR) region compared to early-generation fullerene-based systems, rendering organic semiconductor devices suitable for near-IR sensing applications. While most efforts are concentrated on the photoactive materials, less attention is paid to the impact of the back electrodes on the device performance. Therefore, this work focuses on the optical expediency of gold (Au), silver (Ag), aluminum (Al), and graphite as back electrode materials in organic optoelectronics. This work shows that the "one size fits all" methodology is not a valid approach for choosing the back electrode material. Instead, considering the active layer absorption, the active layer thickness, and the intended application is necessary. A traditional polymer/fullerene-based system, poly(3-hexylthiophene) with [6,6]-phenyl C butyric acid methyl ester (P3HT:PCBM), and a state-of-the-art narrow-band gap non-fullerene-based system, poly[4,8bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-; 4,5-']dithiophene-2,6-diyl-alt-(4-(2-ethy-lhexyl)3-fluorothieno[3,4-]thiophene-)-2-carboxylate-(2-6-diyl)] and 2,2'-((2Z,2'Z)-((5,5'-(4,4-bis(2-ethylhexyl)4-cyclopenta[1,2-:5,4-']dithiophene-2,6-diyl)bis(4-((2ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene)) bis(5,6-difluoro3-oxo-2,3-dihydro-1-indene-2,1-diylidene))dimalononitrile (PCE10:COTIC-4F), are investigated by combining optical transfer matrix modeling simulations with experimentally determined recombination and extraction losses. We find that the narrow-band gap system shows performance gains when employing Au as the back electrode. Furthermore, we show that these performance gains are dependent on active layer thickness, yielding the most significance for thin active layers (<100 nm). Such thin, ultra-narrow-band gap devices are the focus of near-IR sensing applications, highlighting the importance of methodically choosing the back electrode. Lastly, the impact of the back electrode on the OPV device performance is outlined.
得益于非富勒烯受体的发展,包括有机光电探测器(OPD)和有机光伏电池(OPV)在内的有机半导体器件取得了巨大进步。与早期基于富勒烯的系统相比,此类基于非富勒烯受体(NFA)的系统的吸收范围通常向近红外(近红外)区域偏移,使得有机半导体器件适用于近红外传感应用。虽然大多数努力都集中在光活性材料上,但对背电极对器件性能的影响关注较少。因此,这项工作聚焦于金(Au)、银(Ag)、铝(Al)和石墨作为有机光电子学中背电极材料的光学适宜性。这项工作表明,“一刀切”的方法并非选择背电极材料的有效途径。相反,考虑活性层吸收、活性层厚度和预期应用是必要的。通过将光学转移矩阵建模模拟与实验确定的复合和提取损耗相结合,对传统的基于聚合物/富勒烯的系统聚(3 - 己基噻吩)与[6,6] - 苯基C丁酸甲酯(P3HT:PCBM)以及一种先进的基于窄带隙非富勒烯的系统聚[4,8 - 双(5 - (2 - 乙基己基)噻吩 - 2 - 基)苯并[1,2 - ;4,5 - ']二噻吩 - 2,6 - 二基 - 交替 - (4 - (2 - 乙基己基) - 3 - 氟噻吩并[3,4 - ]噻吩 - ) - 2 - 羧酸盐 - (2 - 6 - 二基)]和2,2'-((2Z,2'Z) - ((5,5' - (4,4 - 双(2 - 乙基己基) - 4 - 环戊并[1,2 - :5,4 - ']二噻吩 - 2,6 - 二基)双(4 - ((2 - 乙基己基)氧基)噻吩 - 5,2 - 二基))双(亚甲基))双(5,6 - 二氟 - 3 - 氧代 - 2,3 - 二氢 - 1 - 茚 - 2,1 - 二亚基)二丙二腈(PCE10:COTIC - 4F)进行了研究。我们发现,当采用金作为背电极时,窄带隙系统的性能会提升。此外,我们表明这些性能提升取决于活性层厚度,对于薄活性层(<100 nm)最为显著。此类薄的、超窄带隙器件是近红外传感应用的重点,突出了有方法地选择背电极的重要性。最后,概述了背电极对OPV器件性能的影响。