Suppr超能文献

阐明大气棕色碳种——用穷举法和机器学习取代化学直觉。

Elucidating an Atmospheric Brown Carbon Species-Toward Supplanting Chemical Intuition with Exhaustive Enumeration and Machine Learning.

机构信息

Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States.

Faculty of Physics, University of Vienna, Kolingasse 14-16, AT-1090 Wien, Austria.

出版信息

Environ Sci Technol. 2021 Jun 15;55(12):8447-8457. doi: 10.1021/acs.est.1c00885. Epub 2021 Jun 3.

Abstract

Brown carbon (BrC) is involved in atmospheric light absorption and climate forcing and can cause adverse health effects. Understanding the formation mechanisms and molecular structure of BrC is of key importance in developing strategies to control its environment and health impact. Structure determination of BrC is challenging, due to the lack of experiments providing molecular fingerprints and the sheer number of molecular candidates with identical mass. Suggestions based on chemical intuition are prone to errors due to the inherent bias. We present an unbiased algorithm, using graph-based molecule generation and machine learning, which can identify all molecular structures of compounds involved in biomass burning and the composition of BrC. We apply this algorithm to CHO, a light-absorbing "test case" molecule identified in chamber experiments on the aqueous photo-oxidation of syringol, a prevalent marker in wood smoke. Of the 260 million molecular graphs, the algorithm leaves only 36,518 (0.01%) as viable candidates matching the spectrum. Although no unique molecular structure is obtained from only a chemical formula and a UV/vis absorption spectrum, we discuss further reduction strategies and their efficacy. With additional data, the method can potentially more rapidly identify isomers extracted from lab and field aerosol particles without introducing human bias.

摘要

棕色碳(BrC)参与大气光吸收和气候强迫,会对健康造成不良影响。了解 BrC 的形成机制和分子结构对于制定控制其环境和健康影响的策略至关重要。由于缺乏提供分子指纹的实验,并且具有相同质量的分子候选物数量众多,因此 BrC 的结构确定具有挑战性。基于化学直觉的建议由于存在固有偏差,容易出错。我们提出了一种基于图的分子生成和机器学习的无偏算法,可以识别参与生物质燃烧和 BrC 组成的化合物的所有分子结构。我们将该算法应用于 CHO,这是一种在丁香醇水相光氧化腔室实验中识别出的吸光“测试案例”分子,丁香醇是木烟中的一种常见标志物。在 2.6 亿个分子图中,该算法仅留下 36,518 个(0.01%)符合光谱的可行候选物。尽管仅从化学式和紫外/可见吸收光谱无法获得唯一的分子结构,但我们讨论了进一步的简化策略及其效果。有了更多的数据,该方法可以在不引入人为偏见的情况下,更快速地识别从实验室和现场气溶胶颗粒中提取的异构体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验