Lucia-Tamudo Jesús, Menkel-Lantz Michelle, Tapavicza Enrico
Institute of Chemistry and Pharmacy, University of Regensburg, Universitaetsstrasse 31, 93041 Regensburg, Germany.
Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, USA.
Phys Chem Chem Phys. 2025 Jun 11;27(23):12519-12531. doi: 10.1039/d5cp01063b.
Second-generation molecular nanomotors are gaining popularity within the biomedical field and intense research is being conducted to increase their efficiency for light-induced ultrafast photoisomerization. A key requirement for designing efficient molecular nanomotors is ensuring unidirectional rotation during isomerization and thermal helix inversion. Here, we used non-adiabatic trajectory surface hopping molecular dynamics based on TDDFT to study the excited state dynamics of the stable M- and metastable P-conformers of a second-generation Feringa-type molecular nanomotor. From the trajectories, we computed quantum yields for clockwise and anti-clockwise photoisomerization. Results show that the helicity of the initial structure dictates the direction of the isomerization: 52% of the trajectories starting from M-conformers isomerize clockwise, whereas 23% of the trajectories starting from P-conformers isomerize anti-clockwise. The quantum yield for clockwise isomerization can be maximized by excitation in the center of the absorption spectrum (350-400 nm). In this region, the M-conformer exhibits its maximum absorption and maximum (clockwise) isomerization quantum yield, whereas the P-conformer shows negligible excitation probability and (anti-clockwise) isomerization quantum yield. Moreover, we also find several trajectories, where thermal helix inversion occurs in the hot ground state, directly after excited state relaxation. While helix inversion was observed to proceed in both directions, its net effect favors unidirectional rotation. We further report excited state lifetimes and details about the structural dynamics.
第二代分子纳米马达在生物医学领域越来越受到关注,人们正在进行深入研究以提高其光诱导超快光异构化的效率。设计高效分子纳米马达的一个关键要求是确保异构化和热螺旋反转过程中的单向旋转。在此,我们基于含时密度泛函理论(TDDFT),使用非绝热轨迹表面跳跃分子动力学方法研究了第二代费林加型分子纳米马达稳定的M-构象体和亚稳的P-构象体的激发态动力学。从轨迹中,我们计算了顺时针和逆时针光异构化的量子产率。结果表明,初始结构的螺旋度决定了异构化的方向:从M-构象体开始的轨迹中有52%顺时针异构化,而从P-构象体开始的轨迹中有23%逆时针异构化。通过在吸收光谱中心(350 - 400 nm)激发,可以使顺时针异构化的量子产率最大化。在该区域,M-构象体表现出最大吸收和最大(顺时针)异构化量子产率,而P-构象体的激发概率和(逆时针)异构化量子产率可忽略不计。此外,我们还发现了几条轨迹,其中在激发态弛豫后,热螺旋反转直接发生在热基态。虽然观察到螺旋反转在两个方向上都有发生,但其净效应有利于单向旋转。我们还进一步报告了激发态寿命以及有关结构动力学的细节。