Suppr超能文献

验证视听数字化自杀标记在急性自杀性精神病住院患者中的应用:概念验证研究。

Validation of Visual and Auditory Digital Markers of Suicidality in Acutely Suicidal Psychiatric Inpatients: Proof-of-Concept Study.

机构信息

Research and Development, AiCure, New York, NY, United States.

Psychiatry, New York University School of Medicine, New York, NY, United States.

出版信息

J Med Internet Res. 2021 Jun 3;23(6):e25199. doi: 10.2196/25199.

Abstract

BACKGROUND

Multiple symptoms of suicide risk have been assessed based on visual and auditory information, including flattened affect, reduced movement, and slowed speech. Objective quantification of such symptomatology from novel data sources can increase the sensitivity, scalability, and timeliness of suicide risk assessment.

OBJECTIVE

We aimed to examine measurements extracted from video interviews using open-source deep learning algorithms to quantify facial, vocal, and movement behaviors in relation to suicide risk severity in recently admitted patients following a suicide attempt.

METHODS

We utilized video to quantify facial, vocal, and movement markers associated with mood, emotion, and motor functioning from a structured clinical conversation in 20 patients admitted to a psychiatric hospital following a suicide risk attempt. Measures were calculated using open-source deep learning algorithms for processing facial expressivity, head movement, and vocal characteristics. Derived digital measures of flattened affect, reduced movement, and slowed speech were compared to suicide risk with the Beck Scale for Suicide Ideation controlling for age and sex, using multiple linear regression.

RESULTS

Suicide severity was associated with multiple visual and auditory markers, including speech prevalence (β=-0.68, P=.02, r=0.40), overall expressivity (β=-0.46, P=.10, r=0.27), and head movement measured as head pitch variability (β=-1.24, P=.006, r=0.48) and head yaw variability (β=-0.54, P=.06, r=0.32).

CONCLUSIONS

Digital measurements of facial affect, movement, and speech prevalence demonstrated strong effect sizes and linear associations with the severity of suicidal ideation.

摘要

背景

已经基于视觉和听觉信息评估了多种自杀风险症状,包括情感平淡、动作减少和言语缓慢。从新的数据来源客观量化这些症状可以提高自杀风险评估的灵敏度、可扩展性和及时性。

目的

我们旨在检查使用开源深度学习算法从视频采访中提取的测量值,以量化与自杀风险严重程度相关的面部、声音和运动行为,这些患者是最近在自杀未遂后被收入精神病院的。

方法

我们利用视频来量化情绪、情感和运动功能相关的面部、声音和运动标记,这是在 20 名因自杀风险而被收入精神病院的患者中进行的结构化临床对话。使用开源深度学习算法来计算面部表情、头部运动和声音特征的指标。使用贝克自杀意念量表来控制年龄和性别,将衍生的数字平坦表情、动作减少和言语缓慢测量值与自杀风险进行比较,采用多元线性回归。

结果

自杀严重程度与多种视觉和听觉标记物相关,包括言语发生率(β=-0.68,P=.02,r=0.40)、整体表现力(β=-0.46,P=.10,r=0.27)和头部运动,表现为头部俯仰变异性(β=-1.24,P=.006,r=0.48)和头部偏航变异性(β=-0.54,P=.06,r=0.32)。

结论

面部表情、动作和言语发生率的数字测量值与自杀意念严重程度具有很强的效应量和线性关联。

相似文献

10
Suicidal Thoughts and Behaviors Among Adolescent Psychiatric Inpatients.青少年精神科住院患者的自杀意念和行为。
Arch Suicide Res. 2023 Apr-Jun;27(2):353-366. doi: 10.1080/13811118.2021.1999874. Epub 2021 Nov 11.

引用本文的文献

6
Modern views of machine learning for precision psychiatry.精准精神病学中机器学习的现代观点。
Patterns (N Y). 2022 Nov 11;3(11):100602. doi: 10.1016/j.patter.2022.100602.

本文引用的文献

5
Toward a Distinct Mental Disorder-Suicidal Behavior.迈向一种独特的精神障碍——自杀行为。
JAMA Psychiatry. 2020 Jul 1;77(7):661-662. doi: 10.1001/jamapsychiatry.2020.0111.
9
Depression and posture in patients with Parkinson's disease.帕金森病患者的抑郁与姿势
Gait Posture. 2018 Mar;61:81-85. doi: 10.1016/j.gaitpost.2017.12.026. Epub 2017 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验