Bunnell Brian E, Tsalatsanis Athanasios, Chaphalkar Chaitanya, Robinson Sara, Klein Sierra, Cool Sarah, Szwast Elizabeth, Heider Paul M, Wolf Bethany J, Obeid Jihad S
Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America.
Research Methodology and Biostatistics Core, Office of Research, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America.
PLoS One. 2025 Sep 15;20(9):e0331459. doi: 10.1371/journal.pone.0331459. eCollection 2025.
Deep learning approaches have tremendous potential to improve the predictive power of traditional suicide prediction models to detect and predict intentional self-harm (ISH). Existing research is limited by a general lack of consistent performance and replicability across sites. We aimed to validate a deep learning approach used in previous research to detect and predict ISH using clinical note text and evaluate its generalizability to other academic medical centers.
We extracted clinical notes from electronic health records (EHRs) of 1,538 patients with International Classification of Diseases codes for ISH and 3,012 matched controls without ISH codes. We evaluated the performance of two traditional bag-of-words models (i.e., Naïve Bayes, Random Forest) and two convolutional neural network (CNN) models including randomly initialized (CNNr) and pre-trained Word2Vec initialized (CNNw) weights to detect ISH within 24 hours of and predict ISH from clinical notes 1-6 months before the first ISH event.
In detecting concurrent ISH, both CNN models outperformed bag-of-words models with AUCs of.99 and F1 scores of 0.94. In predicting future ISH, the CNN models outperformed Naïve Bayes models with AUCs of 0.81-0.82 and F1 scores of 0.61-.64.
We demonstrated that leveraging EHRs with a well-defined set of ISH ICD codes to train deep learning models to detect and predict ISH using clinical note text is feasible and replicable at more than one institution. Future work will examine this approach across multiple sites under less controlled settings using both structured and unstructured EHR data.
深度学习方法在提高传统自杀预测模型检测和预测故意自伤(ISH)的预测能力方面具有巨大潜力。现有研究受到各研究地点普遍缺乏一致性能和可重复性的限制。我们旨在验证先前研究中使用的一种深度学习方法,该方法利用临床记录文本检测和预测ISH,并评估其在其他学术医疗中心的可推广性。
我们从1538例有国际疾病分类代码的ISH患者和3012例匹配的无ISH代码对照的电子健康记录(EHR)中提取临床记录。我们评估了两种传统词袋模型(即朴素贝叶斯、随机森林)和两种卷积神经网络(CNN)模型的性能,包括随机初始化(CNNr)和预训练词向量初始化(CNNw)权重,以在ISH发生后24小时内检测ISH,并从首次ISH事件前1 - 6个月的临床记录中预测ISH。
在检测并发ISH时,两种CNN模型均优于词袋模型,AUC为0.99,F1分数为0.94。在预测未来ISH时,CNN模型优于朴素贝叶斯模型,AUC为0.81 - 0.82,F1分数为0.61 - 0.64。
我们证明,利用带有一组定义明确的ISH ICD代码的EHR来训练深度学习模型,以使用临床记录文本检测和预测ISH,在多个机构中是可行且可重复的。未来的工作将在控制较少的环境下,使用结构化和非结构化EHR数据,在多个地点检验这种方法。