Suppr超能文献

基于先验图像诱导扩散张量的低剂量脑灌注 CT 迭代重建。

Iterative reconstruction for low-dose cerebral perfusion computed tomography using prior image induced diffusion tensor.

机构信息

School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China.

Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States of America.

出版信息

Phys Med Biol. 2021 Jun 3;66(11). doi: 10.1088/1361-6560/ac0290.

Abstract

Cerebral perfusion computed tomography (CPCT) can depict the functional status of cerebral circulation at the tissue level; hence, it has been increasingly used to diagnose patients with cerebrovascular disease. However, there is a significant concern that CPCT scanning protocol could expose patients to excessive radiation doses. Although reducing the x-ray tube current when acquiring CPCT projection data is an effective method for reducing radiation dose, this technique usually results in degraded image quality. To enhance the image quality of low-dose CPCT, we present a prior image induced diffusion tensor (PIDT) for statistical iterative reconstruction, based on the penalized weighted least-squares (PWLS) criterion, which we referred to as PWLS-PIDT, for simplicity. Specifically, PIDT utilizes the geometric features of pre-contrast scanned high-quality CT image as a structure prior for PWLS reconstruction; therefore, the low-dose CPCT images are enhanced while preserving important features in the target image. An effective alternating minimization algorithm is developed to solve the associated objective function in the PWLS-PIDT reconstruction. We conduct qualitative and quantitative studies to evaluate the PWLS-PIDT reconstruction with a digital brain perfusion phantom and patient data. With this method, the noise in the reconstructed CPCT images is more substantially reduced than that of other competing methods, without sacrificing structural details significantly. Furthermore, the CPCT sequential images reconstructed via the PWLS-PIDT method can derive more accurate hemodynamic parameter maps than those of other competing methods.

摘要

脑灌注计算机断层扫描(CPCT)可以描绘组织水平上的脑循环功能状态;因此,它已被越来越多地用于诊断脑血管疾病患者。然而,人们非常关注 CPCT 扫描方案可能会使患者暴露在过量的辐射剂量下。虽然在获取 CPCT 投影数据时降低 X 射线管电流是降低辐射剂量的有效方法,但这种技术通常会导致图像质量下降。为了提高低剂量 CPCT 的图像质量,我们提出了一种基于惩罚加权最小二乘(PWLS)准则的先验图像诱导扩散张量(PIDT)的统计迭代重建方法,简称为 PWLS-PIDT。具体来说,PIDT 利用预对比扫描高质量 CT 图像的几何特征作为 PWLS 重建的结构先验;因此,在保留目标图像中重要特征的同时,增强了低剂量 CPCT 图像。开发了一种有效的交替最小化算法来解决 PWLS-PIDT 重建中的相关目标函数。我们进行了定性和定量研究,以评估使用数字脑灌注体模和患者数据的 PWLS-PIDT 重建。通过这种方法,与其他竞争方法相比,重建后的 CPCT 图像中的噪声得到了更显著的降低,而不会显著牺牲结构细节。此外,PWLS-PIDT 方法重建的 CPCT 序列图像可以比其他竞争方法得出更准确的血流动力学参数图。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验