Zhang Han-Yue, Chen Xiao-Gang, Tang Yuan-Yuan, Liao Wei-Qiang, Di Fang-Fang, Mu Xin, Peng Hang, Xiong Ren-Gen
Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China.
Chem Soc Rev. 2021 Jul 21;50(14):8248-8278. doi: 10.1039/c9cs00504h. Epub 2021 Jun 3.
With prosperity, decay, and another spring, molecular ferroelectrics have passed a hundred years since Valasek first discovered ferroelectricity in the molecular compound Rochelle salt. Recently, the proposal of ferroelectrochemistry has injected new vigor into this century-old research field. It should be highlighted that piezoresponse force microscopy (PFM) technique, as a non-destructive imaging and manipulation method for ferroelectric domains at the nanoscale, can significantly speed up the design rate of molecular ferroelectrics as well as enhance the ferroelectric and piezoelectric performances relying on domain engineering. Herein, we provide a brief review of the contribution of the PFM technique toward assisting the design and performance optimization of molecular ferroelectrics. Relying on the relationship between ferroelectric domains and crystallography, together with other physical characteristics such as domain switching and piezoelectricity, we believe that the PFM technique can be effectively applied to assist the design of high-performance molecular ferroelectrics equipped with multifunctionality, and thereby facilitate their practical utilization in optics, electronics, magnetics, thermotics, and mechanics among others.
伴随着繁荣、衰落与又一个春天,自瓦拉塞克首次在分子化合物罗谢尔盐中发现铁电性以来,分子铁电体已经走过了百年历程。近来,铁电化学的提出为这个百年研究领域注入了新的活力。应当强调的是,压电响应力显微镜(PFM)技术作为一种用于纳米尺度铁电畴的无损成像与操控方法,能够显著加快分子铁电体的设计速度,并借助畴工程提高铁电和压电性能。在此,我们简要综述PFM技术对辅助分子铁电体设计及性能优化的贡献。基于铁电畴与晶体学之间的关系,以及诸如畴切换和压电性等其他物理特性,我们认为PFM技术能够有效地应用于辅助设计具备多功能性的高性能分子铁电体,从而促进它们在光学、电子学、磁学、热学和力学等领域的实际应用。