Suppr超能文献

协调连续选择模型之间的相似性。

Reconciling similarity across models of continuous selections.

机构信息

Department of Psychology.

出版信息

Psychol Rev. 2021 Jul;128(4):766-786. doi: 10.1037/rev0000296. Epub 2021 Jun 3.

Abstract

Recently developed models of decision-making have provided accounts of the cognitive processes underlying choice on tasks where responses can fall along a continuum, such as identifying the color or orientation of a stimulus. Even though nearly all of these models seek to extend diffusion decision processes to a continuum of response options, they vary in terms of complexity, tractability, and their ability to predict patterns of data such as multimodal distributions of responses. We suggest that these differences are almost entirely due to differences in how these models account for the similarity among response options. In this theoretical note, we reconcile these differences by characterizing the existing models under a common framework, where the assumptions about psychological representations of similarity, and their implications for behavioral data (e.g., multimodal responses), are made explicit. Furthermore, we implement a simulation-based approach to computing model likelihoods that allows for greater freedom in constructing and implementing continuous response models. The resulting geometric similarity representation (GSR) can supplement approaches like the circular/spherical diffusion models by allowing them to generate multimodal distributions of responses from a single drift, or simplify models like the spatially continuous diffusion model (SCDM) by condensing their representations of similarity and allowing them to generate simulations more efficiently. To illustrate its utility, we apply this approach to multimodal distributions responses, two-dimensional responses (such as locations on a computer screen), and continuous response options with nontrivial, nonlinear similarity relations between response options. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

摘要

最近开发的决策模型为在任务中提供了决策的认知过程的解释,这些任务中的反应可以沿着连续统变化,例如识别刺激的颜色或方向。尽管几乎所有这些模型都试图将扩散决策过程扩展到连续的反应选项,但它们在复杂性、可处理性以及预测数据模式(例如反应的多峰分布)的能力方面存在差异。我们认为,这些差异几乎完全是由于这些模型对反应选项之间的相似性的解释不同。在这篇理论笔记中,我们通过在一个共同的框架下对现有模型进行特征化来调和这些差异,在这个框架中,关于相似性的心理表示的假设及其对行为数据(例如反应的多峰分布)的影响是明确的。此外,我们实现了一种基于模拟的方法来计算模型似然,这允许在构建和实现连续反应模型方面有更大的自由度。由此产生的几何相似性表示(GSR)可以通过允许它们从单个漂移中生成反应的多峰分布来补充圆形/球形扩散模型等方法,或者通过简化相似性表示并允许它们更有效地生成模拟来简化空间连续扩散模型(SCDM)等模型。为了说明其效用,我们将此方法应用于多峰分布反应、二维反应(例如计算机屏幕上的位置)以及具有非平凡非线性相似关系的连续反应选项。(PsycInfo 数据库记录(c)2021 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验