Suppr超能文献

漂移-扩散模型中偏好选择的价值确定性。

Value certainty in drift-diffusion models of preferential choice.

机构信息

Division of the Humanities and Social Sciences.

School of Psychological Sciences.

出版信息

Psychol Rev. 2023 Apr;130(3):790-806. doi: 10.1037/rev0000329. Epub 2021 Oct 25.

Abstract

The (DDM) is widely used and broadly accepted for its ability to account for binary choices (in both the perceptual and preferential domains) and response times (RT), as a function of the stimulus or the choice alternative (or option) values. The DDM is built on an evidence accumulation-to-bound concept, where, in the value domain, a decision maker repeatedly samples the mental representations of the values of the available options until satisfied that there is enough evidence (or support) in favor of one option over the other. As the signals that drive the evidence are derived from value estimates that are not known with certainty, repeated sequential samples are necessary to average out noise. The classic DDM does not allow for different options to have different levels of precision in their value representations. However, recent studies have shown that decision makers often report levels of certainty regarding value estimates that vary across choice options. There is therefore a need to extend the DDM to include an option-specific value certainty component. We present several such DDM extensions and validate them against empirical data from four previous studies. The data support best a DDM version in which the drift of the accumulation is based on a sort of signal-to-noise ratio of value for each option (rather than a mere accumulation of samples from the corresponding value distributions). This DDM variant accounts for the impact of value certainty on both choice consistency and RT present in the empirical data. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

(DDM)被广泛应用和广泛接受,因为它能够解释二元选择(在感知和偏好领域)和反应时间(RT),作为刺激或选择替代(或选项)值的函数。DDM 建立在证据积累到边界的概念之上,在值域中,决策者反复采样可用选项值的心理表示,直到确信有足够的证据(或支持)支持一个选项而不是另一个选项。由于驱动证据的信号来自于不确定的价值估计,因此需要重复的顺序采样来平均噪声。经典的 DDM 不允许不同的选项在其值表示中有不同的精度水平。然而,最近的研究表明,决策者经常报告关于价值估计的确定性水平,这些水平因选择选项而异。因此,需要扩展 DDM 以包括特定于选项的价值确定性组件。我们提出了几个这样的 DDM 扩展,并根据之前四项研究的经验数据对其进行了验证。数据最好支持这样一种 DDM 版本,即积累的漂移是基于每个选项的价值的某种信噪比(而不是仅仅从相应的价值分布中积累样本)。这种 DDM 变体解释了价值确定性对经验数据中选择一致性和 RT 的影响。(PsycInfo 数据库记录(c)2023 APA,保留所有权利)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验