Suppr超能文献

基于自适应深度强化学习的VVC帧内滤波器

Adaptive Deep Reinforcement Learning-Based In-Loop Filter for VVC.

作者信息

Huang Zhijie, Sun Jun, Guo Xiaopeng, Shang Mingyu

出版信息

IEEE Trans Image Process. 2021;30:5439-5451. doi: 10.1109/TIP.2021.3084345. Epub 2021 Jun 8.

Abstract

Deep learning-based in-loop filters have recently demonstrated great improvement for both coding efficiency and subjective quality in video coding. However, most existing deep learning-based in-loop filters tend to develop a sophisticated model in exchange for good performance, and they employ a single network structure to all reconstructed samples, which lack sufficient adaptiveness to the various video content, limiting their performances to some extent. In contrast, this paper proposes an adaptive deep reinforcement learning-based in-loop filter (ARLF) for versatile video coding (VVC). Specifically, we treat the filtering as a decision-making process and employ an agent to select an appropriate network by leveraging recent advances in deep reinforcement learning. To this end, we develop a lightweight backbone and utilize it to design a network set S containing networks with different complexities. Then a simple but efficient agent network is designed to predict the optimal network from S , which makes the model adaptive to various video contents. To improve the robustness of our model, a two-stage training scheme is further proposed to train the agent and tune the network set. The coding tree unit (CTU) is seen as the basic unit for the in-loop filtering processing. A CTU level control flag is applied in the sense of rate-distortion optimization (RDO). Extensive experimental results show that our ARLF approach obtains on average 2.17%, 2.65%, 2.58%, 2.51% under all-intra, low-delay P, low-delay, and random access configurations, respectively. Compared with other deep learning-based methods, the proposed approach can achieve better performance with low computation complexity.

摘要

基于深度学习的环路滤波器最近在视频编码的编码效率和主观质量方面都有了很大的提升。然而,大多数现有的基于深度学习的环路滤波器倾向于开发复杂的模型以换取良好的性能,并且它们对所有重建样本采用单一的网络结构,缺乏对各种视频内容的足够适应性,在一定程度上限制了它们的性能。相比之下,本文提出了一种用于通用视频编码(VVC)的基于深度强化学习的自适应环路滤波器(ARLF)。具体来说,我们将滤波视为一个决策过程,并利用深度强化学习的最新进展,通过一个智能体来选择合适的网络。为此,我们开发了一个轻量级主干,并利用它来设计一个包含不同复杂度网络的网络集S。然后设计了一个简单而有效的智能体网络来从S中预测最优网络,这使得模型能够适应各种视频内容。为了提高我们模型的鲁棒性,进一步提出了一种两阶段训练方案来训练智能体并调整网络集。编码树单元(CTU)被视为环路滤波处理的基本单元。在率失真优化(RDO)的意义上应用了一个CTU级控制标志。大量实验结果表明,我们的ARLF方法在全内、低延迟P、低延迟和随机访问配置下分别平均获得2.17%、2.65%、2.58%、2.51%的性能提升。与其他基于深度学习的方法相比,所提出的方法能够以低计算复杂度实现更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验