Suppr超能文献

基于循环共生理念的轻量级深度强化学习在农业畜牧生产园区景观设计中的应用。

Landscaping Agricultural and Animal Husbandry Production Park Using Lightweight Deep Reinforcement Learning under Circular Symbiosis Concept.

机构信息

Department of Art and Design, Shaanxi Fashion Engineering University, Xi'an City 710000, China.

出版信息

Comput Intell Neurosci. 2022 Jun 2;2022:8410996. doi: 10.1155/2022/8410996. eCollection 2022.

Abstract

The paper intends to optimize the landscape of the agricultural and animal husbandry (AG and AH) production park using the deep reinforcement learning (DRL) model under circular symbiosis. Therefore, after reviewing the relevant literature, decision tree evolutionary algorithm, and ensemble learning criteria, this paper studies and constructs the circular symbiotic industrial chain. Then, an experiment of landscaping the park and optimizing the production is made with full consideration of practical institutions. Finally, the numerical results show that the yield of several crops has been significantly improved after the landscape optimization by the proposed DRL model. Remarkably, the increase in rice yield is the most prominent. The yield of rice and wheat was about 12 kg before optimization and 18 kg after DRL model optimization, which has increased by 6 kg. This research has important reference value for improving the output efficiency of AG and AH products.

摘要

本文旨在利用循环共生下的深度强化学习(DRL)模型优化农业和畜牧业(AG 和 AH)生产园区的景观。因此,在回顾相关文献、决策树进化算法和集成学习标准之后,本文研究并构建了循环共生产业链。然后,充分考虑实际机构,进行了公园景观美化和生产优化实验。最后,数值结果表明,所提出的 DRL 模型进行景观优化后,几种作物的产量有了显著提高。值得注意的是,水稻产量的增长最为显著。优化前水稻和小麦的产量约为 12kg,DRL 模型优化后为 18kg,增加了 6kg。这项研究对提高 AG 和 AH 产品的产出效率具有重要的参考价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fe7/9184201/60d152a23be7/CIN2022-8410996.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验