Suppr超能文献

光谱荧光分析结合机器学习进行地理和品种鉴定,以及预测红葡萄酒中酚类化合物的浓度。

Spectrofluorometric analysis combined with machine learning for geographical and varietal authentication, and prediction of phenolic compound concentrations in red wine.

机构信息

Department of Wine Science and Waite Research Institute, The University of Adelaide (UA), PMB 1, Glen Osmond, South Australia 5064, Australia.

HORIBA Instruments Inc., 20 Knightsbridge Rd., Piscataway, NJ 08854, United States.

出版信息

Food Chem. 2021 Nov 1;361:130149. doi: 10.1016/j.foodchem.2021.130149. Epub 2021 May 18.

Abstract

Fluorescence spectroscopy is rapid, straightforward, selective, and sensitive, and can provide the molecular fingerprint of a sample based on the presence of various fluorophores. In conjunction with chemometrics, fluorescence techniques have been applied to the analysis and classification of an array of products of agricultural origin. Recognising that fluorescence spectroscopy offered a promising method for wine authentication, this study investigated the unique use of an absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) technique for classification of red wines with respect to variety and geographical origin. Multi-block data analysis of A-TEEM data with extreme gradient boosting discriminant analysis yielded an unrivalled 100% and 99.7% correct class assignment for variety and region of origin, respectively. Prediction of phenolic compound concentrations with A-TEEM based on multivariate calibration models using HPLC reference data was also highly effective, and overall, the A-TEEM technique was shown to be a powerful tool for wine classification and analysis.

摘要

荧光光谱法快速、直接、具有选择性且灵敏度高,并且可以根据各种荧光团的存在提供样品的分子指纹。结合化学计量学,荧光技术已应用于农业起源的一系列产品的分析和分类。鉴于荧光光谱法为葡萄酒认证提供了一种很有前途的方法,本研究探讨了独特的吸光度-透射和荧光激发发射矩阵(A-TEEM)技术在根据品种和地理来源对红葡萄酒进行分类方面的应用。使用极端梯度提升判别分析对 A-TEEM 数据进行多块数据分析,分别为品种和产地的正确分类提供了无与伦比的 100%和 99.7%。使用 HPLC 参考数据基于多元校准模型对 A-TEEM 预测酚类化合物浓度也非常有效,总的来说,A-TEEM 技术是一种用于葡萄酒分类和分析的强大工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验