Theoretical Physics Department, Kursk State University, Radishcheva Str., 33, 305000 Kursk, Russia.
Institute of Chemistry, University of Silesia in Katowice, Ul. 9 Szkolna, 40-006 Katowice, Poland.
Int J Mol Sci. 2022 Oct 3;23(19):11743. doi: 10.3390/ijms231911743.
Recent interest in the antioxidant capacity of foods and beverages is based on the established medical knowledge that antioxidants play an essential role in counteracting the damaging effects of free radicals, preventing human neurodegenerative diseases, cardiovascular disorders, and even cancer. At the same time, there is no "the method" that uniquely defines the antioxidant capacity of substances; moreover, the question of interrelation between results obtained by different experimental techniques is still open. In this work, we consider the trolox equivalent antioxidant capacity (TEAC) values obtained by electron paramagnetic resonance (EPR) spectroscopy and ultraviolet-visible (UV-vis) spectroscopy using the classic objects for such studies as an example: red, rosé, and white wine samples. Based on entirely different physical principles, these two methods give values that are not so simply interrelated; this creates a demand for machine learning as a suitable tool for revealing quantitative correspondence between them. The consideration consists of an approximate correlation-based analytical model for the key argument (i.e., TEACEPR) with subsequent adjustment by machine learning-based processing utilizing the CatBoost algorithm with the usage of auxiliary chemical data, such as the total phenolic content and color index, which cannot be accurately described by analytical expressions.
近年来,人们对食物和饮料的抗氧化能力产生了浓厚的兴趣,这是基于已确立的医学知识,即抗氧化剂在对抗自由基的破坏作用、预防人类神经退行性疾病、心血管疾病甚至癌症方面发挥着至关重要的作用。同时,目前还没有“唯一”定义物质抗氧化能力的方法;此外,不同实验技术所得到的结果之间的关联性问题仍然没有定论。在这项工作中,我们以经典的研究对象,如红酒、玫瑰红酒和白葡萄酒样本为例,考虑了电子顺磁共振(EPR)光谱和紫外-可见(UV-vis)光谱法所得到的 Trolox 等效抗氧化能力(TEAC)值。这两种方法基于完全不同的物理原理,所得出的值并不那么容易相互关联;这就需要机器学习作为一种合适的工具来揭示它们之间的定量对应关系。研究内容包括对关键参数(即 EPR-TEAC)进行基于近似相关性的分析模型,然后利用 CatBoost 算法进行基于机器学习的处理,并利用总酚含量和颜色指数等辅助化学数据进行调整,这些数据无法用分析表达式准确描述。