Suppr超能文献

一种用于整合纳米材料成像辅助诊断和治疗的腹部配准技术。

An Abdominal Registration Technology for Integration of Nanomaterial Imaging-Aided Diagnosis and Treatment.

机构信息

School of Automation, Central South University, Changsha 410083, China.

School of Xiangya Hospital, Central South University, Changsha 410075, China.

出版信息

J Biomed Nanotechnol. 2021 May 1;17(5):952-959. doi: 10.1166/jbn.2021.3076.

Abstract

Image registration technology is a key technology used in the process of nanomaterial imaging-aided diagnosis and targeted therapy effect monitoring for abdominal diseases. Recently, the deep-learning based methods have been increasingly used for large-scale medical image registration, because their iteration is much less than those of traditional ones. In this paper, a coarse-to-fine unsupervised learning-based three-dimensional (3D) abdominal CT image registration method is presented. Firstly, an affine transformation was used as an initial step to deal with large deformation between two images. Secondly, an unsupervised total loss function containing similarity, smoothness, and topology preservation measures was proposed to achieve better registration performances during convolutional neural network (CNN) training and testing. The experimental results demonstrated that the proposed method severally obtains the average MSE, PSNR, and SSIM values of 0.0055, 22.7950, and 0.8241, which outperformed some existing traditional and unsupervised learning-based methods. Moreover, our method can register 3D abdominal CT images with shortest time and is expected to become a real-time method for clinical application.

摘要

图像配准技术是腹部疾病纳米材料成像辅助诊断和靶向治疗效果监测过程中的一项关键技术。最近,基于深度学习的方法越来越多地用于大规模医学图像配准,因为它们的迭代次数比传统方法少得多。本文提出了一种基于粗到精的无监督学习的三维(3D)腹部 CT 图像配准方法。首先,采用仿射变换作为初始步骤来处理两幅图像之间的大变形。其次,提出了一种无监督的总损失函数,包含相似性、平滑性和拓扑保持度量,以在卷积神经网络(CNN)训练和测试期间实现更好的配准性能。实验结果表明,该方法分别获得了平均均方误差(MSE)、峰值信噪比(PSNR)和结构相似性指数(SSIM)的 0.0055、22.7950 和 0.8241 的值,优于一些现有的传统和基于无监督学习的方法。此外,我们的方法可以以最短的时间注册 3D 腹部 CT 图像,有望成为临床应用的实时方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验