Suppr超能文献

AEAU-Net:一种通过组合仿射变换和可变形医学图像配准的无监督端到端配准网络。

AEAU-Net: an unsupervised end-to-end registration network by combining affine transformation and deformable medical image registration.

机构信息

School of Computer Science and Technology, Laboratory for Brain Science and Medical Artificial Intelligence, Southwest University of Science and Technology, Mianyang, 621010, China.

NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621010, China.

出版信息

Med Biol Eng Comput. 2023 Nov;61(11):2859-2873. doi: 10.1007/s11517-023-02887-y. Epub 2023 Jul 27.

Abstract

Deformable medical image registration plays an essential role in clinical diagnosis and treatment. However, due to the large difference in image deformation, unsupervised convolutional neural network (CNN)-based methods cannot extract global features and local features simultaneously and cannot capture long-distance dependencies to solve the problem of excessive deformation. In this paper, an unsupervised end-to-end registration network is proposed for 3D MRI medical image registration, named AEAU-Net, which includes two-stage operations, i.e., an affine transformation and a deformable registration. These two operations are implemented by an affine transformation subnetwork and a deformable registration subnetwork, respectively. In the deformable registration subnetwork, termed as EAU-Net, we designed an efficient attention mechanism (EAM) module and a recursive residual path (RSP) module. The EAM module is embedded in the bottom layer of the EAU-Net to capture long-distance dependencies. The RSP model is used to obtain effective features by fusing deep and shallow features. Extensive experiments on two datasets, LPBA40 and Mindboggle101, were conducted to verify the effectiveness of the proposed method. Compared with baseline methods, this proposed method could obtain better registration performance. The ablation study further demonstrated the reasonability and validity of the designed architecture of the proposed method.

摘要

可变形医学图像配准在临床诊断和治疗中起着至关重要的作用。然而,由于图像变形的巨大差异,基于无监督卷积神经网络(CNN)的方法不能同时提取全局特征和局部特征,也不能捕获远距离依赖关系,从而无法解决过度变形的问题。在本文中,我们提出了一种用于 3D MRI 医学图像配准的无监督端到端配准网络,称为 AEAU-Net,它包括两个阶段的操作,即仿射变换和可变形配准。这两个操作分别由仿射变换子网络和可变形配准子网络来实现。在可变形配准子网络中,我们设计了一种高效的注意力机制(EAM)模块和递归残差路径(RSP)模块。EAM 模块嵌入在 EAU-Net 的底层,以捕获远距离依赖关系。RSP 模型用于通过融合深层和浅层特征来获得有效的特征。在 LPBA40 和 Mindboggle101 两个数据集上进行了广泛的实验,验证了所提出方法的有效性。与基线方法相比,该方法可以获得更好的配准性能。消融研究进一步证明了所提出方法的设计架构的合理性和有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验