Huang Ying, Sicar Sanchari, Ramirez-Prado Juan S, Manza-Mianza Deborah, Antunez-Sanchez Javier, Brik-Chaouche Rim, Rodriguez-Granados Natalia Y, An Jing, Bergounioux Catherine, Mahfouz Magdy M, Hirt Heribert, Crespi Martin, Concia Lorenzo, Barneche Fredy, Amiard Simon, Probst Aline V, Gutierrez-Marcos Jose, Ariel Federico, Raynaud Cécile, Latrasse David, Benhamed Moussa
Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France.
School of Life Science, University of Warwick, Coventry CV4 7AL, United Kingdom.
Genome Res. 2021 Jul;31(7):1230-1244. doi: 10.1101/gr.273771.120. Epub 2021 Jun 3.
In animals, distant H3K27me3-marked Polycomb targets can establish physical interactions forming repressive chromatin hubs. In plants, growing evidence suggests that H3K27me3 acts directly or indirectly to regulate chromatin interactions, although how this histone modification modulates 3D chromatin architecture remains elusive. To decipher the impact of the dynamic deposition of H3K27me3 on the nuclear interactome, we combined genetics, transcriptomics, and several 3D epigenomic approaches. By analyzing mutants defective for histone H3K27 methylation or demethylation, we uncovered the crucial role of this chromatin mark in short- and previously unnoticed long-range chromatin loop formation. We found that a reduction in H3K27me3 levels led to a decrease in the interactions within Polycomb-associated repressive domains. Regions with lower H3K27me3 levels in the H3K27 methyltransferase mutant established new interactions with regions marked with H3K9ac, a histone modification associated with active transcription, indicating that a reduction in H3K27me3 levels induces a global reconfiguration of chromatin architecture. Altogether, our results reveal that the 3D genome organization is tightly linked to reversible histone modifications that govern chromatin interactions. Consequently, nuclear organization dynamics shapes the transcriptional reprogramming during plant development and places H3K27me3 as a key feature in the coregulation of distant genes.
在动物中,远距离的H3K27me3标记的多梳靶标可以建立物理相互作用,形成抑制性染色质枢纽。在植物中,越来越多的证据表明H3K27me3直接或间接地调节染色质相互作用,尽管这种组蛋白修饰如何调节三维染色质结构仍不清楚。为了解H3K27me3动态沉积对核相互作用组的影响,我们结合了遗传学、转录组学和几种三维表观基因组学方法。通过分析组蛋白H3K27甲基化或去甲基化缺陷的突变体,我们发现这种染色质标记在短程和以前未被注意到的长程染色质环形成中起关键作用。我们发现H3K27me3水平的降低导致多梳相关抑制域内的相互作用减少。H3K27甲基转移酶突变体中H3K27me3水平较低的区域与标记有H3K9ac的区域建立了新的相互作用,H3K9ac是一种与活跃转录相关的组蛋白修饰,这表明H3K27me3水平的降低会诱导染色质结构的全局重新配置。总之,我们的结果表明三维基因组组织与控制染色质相互作用的可逆组蛋白修饰紧密相连。因此,核组织动态塑造了植物发育过程中的转录重编程,并将H3K27me3作为远距离基因共调控的关键特征。