Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, München, Germany.
Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
Nat Commun. 2021 Jun 3;12(1):3312. doi: 10.1038/s41467-021-23412-5.
Self-organisation of Min proteins is responsible for the spatial control of cell division in Escherichia coli, and has been studied both in vivo and in vitro. Intriguingly, the protein patterns observed in these settings differ qualitatively and quantitatively. This puzzling dichotomy has not been resolved to date. Using reconstituted proteins in laterally wide microchambers with a well-controlled height, we experimentally show that the Min protein dynamics on the membrane crucially depend on the micro chamber height due to bulk concentration gradients orthogonal to the membrane. A theoretical analysis shows that in vitro patterns at low microchamber height are driven by the same lateral oscillation mode as pole-to-pole oscillations in vivo. At larger microchamber height, additional vertical oscillation modes set in, marking the transition to a qualitatively different in vitro regime. Our work reveals the qualitatively different mechanisms of mass transport that govern Min protein-patterns for different bulk heights and thus shows that Min patterns in cells are governed by a different mechanism than those in vitro.
Min 蛋白的自我组织负责控制大肠杆菌细胞分裂的空间位置,其在体内和体外都得到了研究。有趣的是,在这些环境中观察到的蛋白质模式在质量和数量上存在差异。到目前为止,这个令人费解的二分法还没有得到解决。我们使用重组蛋白在具有良好控制高度的横向宽微腔中进行实验,结果表明,由于与膜正交的体相浓度梯度,膜上 Min 蛋白的动力学取决于微腔的高度。理论分析表明,在低微腔高度下的体外模式由与体内极对极振荡相同的横向振荡模式驱动。在更大的微腔高度下,会出现额外的垂直振荡模式,标志着向定性上不同的体外状态的转变。我们的工作揭示了控制不同体相高度下 Min 蛋白模式的不同质量传输机制,从而表明细胞中 Min 模式的形成机制与体外不同。