Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
Nat Commun. 2023 Jan 27;14(1):450. doi: 10.1038/s41467-023-35997-0.
The Min proteins constitute the best-studied model system for pattern formation in cell biology. We theoretically predict and experimentally show that the propagation direction of in vitro Min protein patterns can be controlled by a hydrodynamic flow of the bulk solution. We find downstream propagation of Min wave patterns for low MinE:MinD concentration ratios, upstream propagation for large ratios, but multistability of both propagation directions in between. Whereas downstream propagation can be described by a minimal model that disregards MinE conformational switching, upstream propagation can be reproduced by a reduced switch model, where increased MinD bulk concentrations on the upstream side promote protein attachment. Our study demonstrates that a differential flow, where bulk flow advects protein concentrations in the bulk, but not on the surface, can control surface-pattern propagation. This suggests that flow can be used to probe molecular features and to constrain mathematical models for pattern-forming systems.
Min 蛋白构成了细胞生物学中模式形成的研究得最好的模型体系。我们从理论上预测并通过实验证明,体外 Min 蛋白模式的传播方向可以通过本体溶液的流体力学流来控制。我们发现,对于低 MinE:MinD 浓度比,Min 波模式的下游传播;对于大的浓度比,上游传播;但是在两者之间存在两种传播方向的多稳定性。虽然下游传播可以用一个忽略 MinE 构象转换的最小模型来描述,但是上游传播可以用一个简化的开关模型来重现,其中上游侧增加的 MinD 本体浓度促进了蛋白质的附着。我们的研究表明,差异流可以控制表面模式的传播,其中本体流在本体中输运蛋白质浓度,但不在表面上。这表明可以利用流动来探测分子特征,并约束模式形成系统的数学模型。