Suppr超能文献

二维蛋白质二聚化的结合亲和力得益于焓稳定作用。

Binding affinities for 2D protein dimerization benefit from enthalpic stabilization.

作者信息

Jhaveri Adip, Chhibber Smriti, Kulkarni Nandan, Johnson Margaret E

机构信息

TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218.

出版信息

bioRxiv. 2025 Mar 15:2025.01.16.633485. doi: 10.1101/2025.01.16.633485.

Abstract

Dimerization underpins all macromolecular assembly processes both on and off the membrane. While the strength of dimerization, , is commonly quantified in solution (3D), many proteins like the soluble BAR domain-containing proteins also reversibly dimerize while bound to a membrane surface (2D). The ratio of dissociation constants, , defines a lengthscale that is essential for determining whether dimerization is more favorable in solution or on the membrane surface, particularly for these proteins that reversibly transition between 3D and 2D. While purely entropic rigid-body estimates of apply well to transmembrane adhesion proteins, we show here using Molecular Dynamics simulations that even moderate flexibility in BAR domains dramatically alters the free energy landscape from 3D to 2D, driving enhanced selectivity and stability of the native dimer in 2D. By simulating BAR homodimerization in three distinct environments, 1) solution (3D), 2) bound to a lipid bilayer (2D), and 3) fully solvated but restrained to a pseudo membrane (2D), we show that both 2D environments induce backbone configurations that better match the crystal structure and produce more enthalpically favorable dimer states, violating the rigid-body estimates to drive . Remarkably, contact with an explicit lipid bilayer is not necessary to drive these changes, as the solvated pseudo membrane induces this same result. We show this outcome depends on the stability of the protein interaction, as a parameterization that produces exceptionally stable binding in 3D does not induce systematic improvements on the membrane. With lengthscales calculated here that are well below a physiological volume-to-surface-area lengthscale, assembly will be dramatically enhanced on the membrane, which aligns with BAR domain function as membrane remodelers. Our approach provides simple metrics to move beyond rigid-body estimates of 2D affinities and assess whether conformational flexibility selects for enhanced stability on membranes.

摘要

二聚化是膜上和膜外所有大分子组装过程的基础。虽然二聚化强度( )通常在溶液中(三维)进行量化,但许多蛋白质,如含可溶性BAR结构域的蛋白质,在与膜表面结合时(二维)也会可逆地二聚化。解离常数的比值( )定义了一个长度尺度,这对于确定二聚化在溶液中还是在膜表面更有利至关重要,特别是对于那些在三维和二维之间可逆转变的蛋白质。虽然对 的纯熵刚体估计很好地适用于跨膜粘附蛋白,但我们在此使用分子动力学模拟表明,即使BAR结构域具有适度的灵活性,也会极大地改变从三维到二维的自由能景观,从而提高二维中天然二聚体的选择性和稳定性。通过在三种不同环境中模拟BAR同源二聚化,1)溶液(三维),2)与脂质双层结合(二维),以及3)完全溶剂化但被限制在伪膜上(二维),我们表明这两种二维环境都会诱导出与晶体结构更好匹配的主链构象,并产生更有利于焓的二聚体状态,这违反了刚体估计,从而推动 。值得注意的是,驱动这些变化并不一定需要与明确的脂质双层接触,因为溶剂化的伪膜也会产生相同的结果。我们表明,这一结果取决于蛋白质相互作用的稳定性,因为在三维中产生异常稳定结合的参数化在膜上并不会带来系统性的改善。这里计算的 长度尺度远低于生理体积与表面积的长度尺度,因此在膜上组装将显著增强,这与BAR结构域作为膜重塑剂的功能一致。我们的方法提供了简单的指标,以超越对二维亲和力的刚体估计,并评估构象灵活性是否选择增强膜上的稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7944/11952360/45a8b6af2a5b/nihpp-2025.01.16.633485v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验