Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
Nat Rev Rheumatol. 2021 Jul;17(7):426-439. doi: 10.1038/s41584-021-00621-2. Epub 2021 Jun 3.
The physiologically hypoxic intervertebral disc and cartilage rely on the hypoxia-inducible factor (HIF) family of transcription factors to mediate cellular responses to changes in oxygen tension. During homeostatic development, oxygen-dependent prolyl hydroxylases, circadian clock proteins and metabolic intermediates control the activities of HIF1 and HIF2 in these tissues. Mechanistically, HIF1 is the master regulator of glycolytic metabolism and cytosolic lactate levels. In addition, HIF1 regulates mitochondrial metabolism by promoting flux through the tricarboxylic acid cycle, inhibiting downsteam oxidative phosphorylation and controlling mitochondrial health through modulation of the mitophagic pathway. Accumulation of metabolic intermediates from HIF-dependent processes contribute to intracellular pH regulation in the disc and cartilage. Namely, to prevent changes in intracellular pH that could lead to cell death, HIF1 orchestrates a bicarbonate buffering system in the disc, controlled by carbonic anhydrase 9 (CA9) and CA12, sodium bicarbonate cotransporters and an intracellular H/lactate efflux mechanism. In contrast to HIF1, the role of HIF2 remains elusive; in disorders of the disc and cartilage, its function has been linked to both anabolic and catabolic pathways. The current knowledge of hypoxic cell metabolism and regulation of HIF1 activity provides a strong basis for the development of future therapies designed to repair the degenerative disc.
生理缺氧的椎间盘和软骨依赖缺氧诱导因子 (HIF) 转录因子家族来介导细胞对氧张力变化的反应。在稳态发育过程中,氧依赖的脯氨酰羟化酶、昼夜节律蛋白和代谢中间产物控制这些组织中 HIF1 和 HIF2 的活性。从机制上讲,HIF1 是糖酵解代谢和细胞质乳酸水平的主调节因子。此外,HIF1 通过促进三羧酸循环的通量、抑制下游氧化磷酸化以及通过调节噬线粒体途径来控制线粒体健康,从而调节线粒体代谢。HIF 依赖性过程产生的代谢中间产物有助于椎间盘和软骨中的细胞内 pH 调节。也就是说,为了防止可能导致细胞死亡的细胞内 pH 变化,HIF1 在椎间盘中协调碳酸氢盐缓冲系统,由碳酸酐酶 9 (CA9) 和 CA12、钠碳酸氢盐共转运体和细胞内 H/乳酸外排机制控制。与 HIF1 不同,HIF2 的作用仍然难以捉摸;在椎间盘和软骨的疾病中,其功能与合成代谢和分解代谢途径都有关。对缺氧细胞代谢和 HIF1 活性调节的现有认识为开发旨在修复退行性椎间盘的未来治疗方法提供了坚实的基础。