Pashaei Babak, Bellani Sebastiano, Shahroosvand Hashem, Bonaccorso Francesco
Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan Zanjan Iran
Graphene Labs, Istituto Italiano di Tecnologia via Morego 30 16163 Genova Italy
Chem Sci. 2020 Jan 13;11(9):2429-2439. doi: 10.1039/c9sc05694g.
Triphenylamine--phenyl-4-(phenyldiazenyl)aniline (TPA-AZO) is synthesized a facile CuI-catalyzed reaction and used as a hole transport material (HTM) in perovskite solar cells (PSCs), as an alternative to the expensive spiro-type molecular materials, including commercial 2,2',7,7'-tetrakis[,-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-OMeTAD). Experimental and computational investigations reveal that the highest occupied molecular orbital (HOMO) level of TPA-AZO is deeper than that of spiro-OMeTAD, and optimally matches with the conduction band of the perovskite light absorber. The use of TPA-AZO as a HTM results in PSC prototypes with a power conversion efficiency (PCE) approaching that of the spiro-OMeTAD-based reference device (17.86% 19.07%). Moreover, the use of inexpensive starting reagents for the synthesis of TPA-AZO makes the latter a new affordable HTM for PSCs. In particular, the cost of 1 g of TPA-AZO ($22.76) is significantly lower compared to that of spiro-OMeTAD ($170-475). Overall, TPA-AZO-based HTMs are promising candidates for the implementation of viable PSCs in large-scale production.
三苯胺-苯基-4-(苯基重氮基)苯胺(TPA-AZO)通过一种简便的碘化亚铜催化反应合成,并用作钙钛矿太阳能电池(PSC)中的空穴传输材料(HTM),作为包括商业用2,2',7,7'-四[,-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-OMeTAD)在内的昂贵螺型分子材料的替代品。实验和计算研究表明,TPA-AZO的最高占据分子轨道(HOMO)能级比spiro-OMeTAD的更深,并且与钙钛矿光吸收体的导带最佳匹配。使用TPA-AZO作为HTM导致PSC原型的功率转换效率(PCE)接近基于spiro-OMeTAD的参考器件(17.86% 19.07%)。此外,使用廉价的起始试剂合成TPA-AZO使得后者成为一种新的、价格可承受的PSC空穴传输材料。特别是,1克TPA-AZO的成本(22.76美元)与spiro-OMeTAD的成本(170 - 475美元)相比显著更低。总体而言,基于TPA-AZO的空穴传输材料是大规模生产可行的PSC的有前途的候选材料。