Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York.
Am J Physiol Heart Circ Physiol. 2021 Aug 1;321(2):H259-H274. doi: 10.1152/ajpheart.00174.2021. Epub 2021 Jun 4.
Underlying molecular mechanisms for the development of diabetic cardiomyopathy remain to be determined. Long-term exposure to hyperglycemia causes oxidative stress, which leads to cardiomyocyte dysfunction. Previous studies established the importance of thioredoxin-interacting protein (Txnip) in cellular redox homeostasis and glucose metabolism. Txnip is a highly glucose-responsive molecule that interacts with the catalytic center of reduced thioredoxin and inhibits the antioxidant function of thioredoxin. Here, we show that the molecular interaction between Txnip and thioredoxin plays a pivotal role in the regulation of redox balance in the diabetic myocardium. High glucose increased Txnip expression, decreased thioredoxin activities, and caused oxidative stress in cells. The Txnip-thioredoxin complex was detected in cells with overexpressing wild-type Txnip but not Txnip cysteine 247 to serine (C247S) mutant that disrupts the intermolecular disulfide bridge. Then, diabetes was induced in cardiomyocyte-specific Txnip C247S knock-in mice and their littermate control animals by injections of streptozotocin (STZ). Prolonged hyperglycemia upregulated myocardial Txnip expression in both genotypes. The absence of Txnip's inhibition of thioredoxin in Txnip C247S mutant hearts promoted mitochondrial antioxidative capacities in cardiomyocytes, thereby protecting the heart from oxidative damage by diabetes. Stress hemodynamic analysis uncovered that Txnip C247S knock-in hearts have a greater left ventricular contractile reserve than wild-type hearts under STZ-induced diabetic conditions. These results provide novel evidence that Txnip serves as a regulator of hyperglycemia-induced cardiomyocyte toxicities through direct inhibition of thioredoxin and identify the single cysteine residue in Txnip as a therapeutic target for diabetic injuries. Thioredoxin-interacting protein (Txnip) has been of great interest as a molecular mechanism to mediate diabetic organ damage. Here, we provide novel evidence that a single mutation of Txnip confers a defense mechanism against myocardial oxidative stress in streptozotocin-induced diabetic mice. The results demonstrate the importance of Txnip as a cysteine-containing redox protein that regulates antioxidant thioredoxin via disulfide bond-switching mechanism and identify the cysteine in Txnip as a therapeutic target for diabetic cardiomyopathy.
糖尿病性心肌病的潜在分子机制仍有待确定。长期暴露于高血糖会导致氧化应激,从而导致心肌细胞功能障碍。先前的研究已经确定了硫氧还蛋白相互作用蛋白 (Txnip) 在细胞氧化还原平衡和葡萄糖代谢中的重要性。Txnip 是一种对葡萄糖高度敏感的分子,它与还原型硫氧还蛋白的催化中心相互作用,抑制硫氧还蛋白的抗氧化功能。在这里,我们表明 Txnip 和硫氧还蛋白之间的分子相互作用在调节糖尿病心肌中的氧化还原平衡中起着关键作用。高葡萄糖增加了 Txnip 的表达,降低了硫氧还蛋白的活性,并导致细胞发生氧化应激。在过表达野生型 Txnip 的细胞中检测到 Txnip-硫氧还蛋白复合物,但在破坏分子间二硫键的 Txnip 半胱氨酸 247 至丝氨酸 (C247S) 突变体中未检测到。然后,通过链脲佐菌素 (STZ) 注射在心肌特异性 Txnip C247S 敲入小鼠及其同窝对照动物中诱导糖尿病。两种基因型的心肌 Txnip 表达均随着高血糖时间延长而上调。在 Txnip C247S 突变体心脏中,Txnip 对硫氧还蛋白的抑制缺失促进了心肌细胞的线粒体抗氧化能力,从而保护心脏免受糖尿病引起的氧化损伤。应激血流动力学分析表明,在 STZ 诱导的糖尿病条件下,Txnip C247S 敲入心脏比野生型心脏具有更大的左心室收缩储备。这些结果提供了新的证据,表明 Txnip 通过直接抑制硫氧还蛋白作为一种调节高血糖诱导的心肌毒性的调节剂,并确定 Txnip 中的单个半胱氨酸残基作为糖尿病损伤的治疗靶点。硫氧还蛋白相互作用蛋白 (Txnip) 作为介导糖尿病器官损伤的分子机制引起了极大的关注。在这里,我们提供了新的证据表明,Txnip 的单个突变赋予了链脲佐菌素诱导的糖尿病小鼠心肌氧化应激的防御机制。结果表明 Txnip 作为一种含半胱氨酸的氧化还原蛋白的重要性,它通过二硫键转换机制调节抗氧化硫氧还蛋白,并确定 Txnip 中的半胱氨酸作为糖尿病性心肌病的治疗靶点。
Am J Physiol Heart Circ Physiol. 2021-8-1
J Mol Cell Cardiol. 2021-6
BMC Cardiovasc Disord. 2024-9-3
Am J Physiol Heart Circ Physiol. 2016-6-1
Acta Pharmacol Sin. 2025-4
Endocrinology. 2025-3-24
Front Endocrinol (Lausanne). 2024
Antioxidants (Basel). 2023-5-11
Front Cardiovasc Med. 2022-10-20
J Mol Cell Cardiol. 2021-6
Diabetes Metab Syndr Obes. 2020-1-7
Diabetes Ther. 2019-6
Protein Sci. 2018-12-13
Curr Opin Endocrinol Diabetes Obes. 2018-4
Am J Physiol Heart Circ Physiol. 2018-1-5