Suppr超能文献

基于 sEMG 的 CNN 腕部运动估计的跨主体域自适应

Inter-Subject Domain Adaptation for CNN-Based Wrist Kinematics Estimation Using sEMG.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2021;29:1068-1078. doi: 10.1109/TNSRE.2021.3086401. Epub 2021 Jun 14.

Abstract

Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects.

摘要

最近,卷积神经网络(CNN)已被广泛研究用于使用表面肌电图(sEMG)信号解码人类意图。然而,预训练的 CNN 模型在测试新个体时通常会严重降级,这主要是由于域转移,即训练和测试 sEMG 数据的特征有很大差异。为了提高 CNN 在腕部运动估计中的跨个体性能,我们提出了一种基于监督域自适应(SDA)的新回归方案,该方案可以有效减少域转移效应。具体来说,建立了一个具有共享权重的双流 CNN,以同时利用源和目标 sEMG 数据,从而提取出域不变特征。为了调整 CNN 权重,我们同时使用回归损失和域差异损失,前者用于监督学习,后者最小化两个域之间的分布差异。在这项研究中,招募了 8 名健康受试者进行腕部屈伸运动。实验结果表明,所提出的回归 SDA 在运动估计的单对单和多对单场景中均优于微调(一种最先进的迁移学习方法)。与微调不同,微调容易出现灾难性遗忘,回归 SDA 可以在原始域中保持更好的性能,从而提高模型在多个受试者之间的可重用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验