Suppr超能文献

基于卷积神经网络的迁移学习方法的表面肌电手势识别。

Hand Gesture Recognition based on Surface Electromyography using Convolutional Neural Network with Transfer Learning Method.

出版信息

IEEE J Biomed Health Inform. 2021 Apr;25(4):1292-1304. doi: 10.1109/JBHI.2020.3009383. Epub 2021 Apr 6.

Abstract

This paper presents an effective transfer learning (TL) strategy for the realization of surface electromyography (sEMG)-based gesture recognition with high generalization and low training burden. To realize the idea of taking a well-trained model as the feature extractor of the target networks, 30 hand gestures involving various states of finger joints, elbow joint and wrist joint are selected to compose the source task, and a convolutional neural network (CNN)-based source network is designed and trained as the general gesture EMG feature extraction network. Then, two types of target networks, in the forms of CNN-only and CNN+LSTM (long short-term memory) respectively, are designed with the same CNN architecture as the feature extraction network. Finally, gesture recognition experiments on three different target gesture datasets are carried out under TL and Non-TL strategies respectively. The experimental results verify the validity of the proposed TL strategy in improving hand gesture recognition accuracy and reducing training burden. For both the CNN-only and the CNN+LSTM target networks, on the three target datasets from new users, new gestures and different collection scheme, the proposed TL strategy improves the recognition accuracy by 10%∼38%, reduces the training time to tens of times, and guarantees the recognition accuracy of more than 90% when only 2 repetitions of each gesture are used to fine-tune the parameters of target networks. The proposed TL strategy has important application value for promoting the development of myoelectric control systems.

摘要

本文提出了一种有效的迁移学习(TL)策略,用于实现基于表面肌电(sEMG)的手势识别,具有较高的泛化能力和较低的训练负担。为了实现利用训练有素的模型作为目标网络特征提取器的想法,选择了 30 种涉及手指关节、肘关节和腕关节各种状态的手势来组成源任务,并设计和训练了基于卷积神经网络(CNN)的源网络作为通用手势 EMG 特征提取网络。然后,设计了两种类型的目标网络,分别为仅 CNN 型和 CNN+LSTM(长短期记忆)型,其特征提取网络均采用相同的 CNN 架构。最后,分别在 TL 和非 TL 策略下,对来自新用户、新手势和不同采集方案的三个不同目标手势数据集进行手势识别实验。实验结果验证了所提出的 TL 策略在提高手势识别精度和降低训练负担方面的有效性。对于仅 CNN 和 CNN+LSTM 两种目标网络,在所提出的 TL 策略下,在来自新用户、新手势和不同采集方案的三个目标数据集上,识别精度提高了 10%∼38%,训练时间缩短了数十倍,并且当仅使用每个手势的 2 次重复来微调目标网络的参数时,识别精度保证在 90%以上。所提出的 TL 策略对于促进肌电控制系统的发展具有重要的应用价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验