Suppr超能文献

一种新颖的主动学习框架,用于从表面肌电图进行跨主题人体活动识别。

A Novel Active Learning Framework for Cross-Subject Human Activity Recognition from Surface Electromyography.

机构信息

College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China.

School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Sensors (Basel). 2024 Sep 13;24(18):5949. doi: 10.3390/s24185949.

Abstract

Wearable sensor-based human activity recognition (HAR) methods hold considerable promise for upper-level control in exoskeleton systems. However, such methods tend to overlook the critical role of data quality and still encounter challenges in cross-subject adaptation. To address this, we propose an active learning framework that integrates the relation network architecture with data sampling techniques. Initially, target data are used to fine tune two auxiliary classifiers of the pre-trained model, thereby establishing subject-specific classification boundaries. Subsequently, we assess the significance of the target data based on classifier discrepancy and partition the data into sample and template sets. Finally, the sampled data and a category clustering algorithm are employed to tune model parameters and optimize template data distribution, respectively. This approach facilitates the adaptation of the model to the target subject, enhancing both accuracy and generalizability. To evaluate the effectiveness of the proposed adaptation framework, we conducted evaluation experiments on a public dataset and a self-constructed electromyography (EMG) dataset. Experimental results demonstrate that our method outperforms the compared methods across all three statistical metrics. Furthermore, ablation experiments highlight the necessity of data screening. Our work underscores the practical feasibility of implementing user-independent HAR methods in exoskeleton control systems.

摘要

基于可穿戴传感器的人体活动识别 (HAR) 方法在外骨骼系统的高层控制中具有很大的应用前景。然而,这种方法往往忽略了数据质量的关键作用,并且在跨主体适应方面仍然存在挑战。为了解决这个问题,我们提出了一种主动学习框架,该框架将关系网络架构与数据采样技术相结合。首先,利用目标数据对预训练模型的两个辅助分类器进行微调,从而建立特定于主体的分类边界。然后,根据分类器差异评估目标数据的重要性,并将数据划分为样本集和模板集。最后,通过采样数据和类别聚类算法分别调整模型参数和优化模板数据分布。这种方法有助于模型适应目标主体,提高准确性和通用性。为了评估所提出的适应框架的有效性,我们在一个公共数据集和一个自建肌电 (EMG) 数据集上进行了评估实验。实验结果表明,我们的方法在所有三个统计指标上都优于比较方法。此外,消融实验强调了数据筛选的必要性。我们的工作强调了在外骨骼控制系统中实现用户独立的 HAR 方法的实际可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78f7/11435705/3aeb4ee1589a/sensors-24-05949-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验