Suppr超能文献

通过转移性结直肠癌的肿瘤生长抑制和总体生存建模,显示原发肿瘤位置、肿瘤异质性和基因突变的相关性。

Relevance of primary lesion location, tumour heterogeneity and genetic mutation demonstrated through tumour growth inhibition and overall survival modelling in metastatic colorectal cancer.

机构信息

Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.

IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.

出版信息

Br J Clin Pharmacol. 2022 Jan;88(1):166-177. doi: 10.1111/bcp.14937. Epub 2021 Jun 21.

Abstract

AIMS

The aims of this work were to build a semi-mechanistic tumour growth inhibition (TGI) model for metastatic colorectal cancer (mCRC) patients receiving either cetuximab + chemotherapy or chemotherapy alone and to identify early predictors of overall survival (OS).

METHODS

A total of 1716 patients from 4 mCRC clinical studies were included in the analysis. The TGI model was built with 8973 tumour size measurements where the probability of drop-out was also included and modelled as a time-to-event variable using parametric survival models, as it was the case in the OS analysis. The effects of patient- and tumour-related covariates on model parameters were explored.

RESULTS

Chemotherapy and cetuximab effects were included in an additive form in the TGI model. Development of resistance was found to be faster for chemotherapy (drug effect halved at wk 8) compared to cetuximab (drug effect halved at wk 12). KRAS wild-type status and presenting a right-sided primary lesion were related to a 3.5-fold increase in cetuximab drug effect and a 4.7× larger cetuximab resistance, respectively. The early appearance of a new lesion (HR = 4.14), a large tumour size at baseline (HR = 1.62) and tumour heterogeneity (HR = 1.36) were the main predictors of OS.

CONCLUSIONS

Semi-mechanistic TGI and OS models have been developed in a large population of mCRC patients receiving chemotherapy in combination or not with cetuximab. Tumour-related predictors, including a machine learning derived-index of tumour heterogeneity, were linked to changes in drug effect, resistance to treatment or OS, contributing to the understanding of the variability in clinical response.

摘要

目的

本研究旨在建立一个针对接受西妥昔单抗联合化疗或单纯化疗的转移性结直肠癌(mCRC)患者的半机械性肿瘤生长抑制(TGI)模型,并确定总生存期(OS)的早期预测因子。

方法

共纳入来自 4 项 mCRC 临床研究的 1716 例患者。该 TGI 模型基于 8973 次肿瘤大小测量值构建,其中还包括退出概率,并使用参数生存模型对其进行建模,因为在 OS 分析中也是如此。探索了患者和肿瘤相关协变量对模型参数的影响。

结果

在 TGI 模型中,以加和的形式纳入了化疗和西妥昔单抗的作用。与西妥昔单抗(药物作用减半发生在第 12 周)相比,化疗的耐药性发展更快(药物作用减半发生在第 8 周)。KRAS 野生型状态和原发肿瘤位于右侧与西妥昔单抗药物作用增加 3.5 倍和西妥昔单抗耐药性增加 4.7 倍有关。新病灶的早期出现(HR=4.14)、基线时肿瘤较大(HR=1.62)和肿瘤异质性(HR=1.36)是 OS 的主要预测因子。

结论

在接受化疗联合或不联合西妥昔单抗治疗的大量 mCRC 患者中,已经建立了半机械性 TGI 和 OS 模型。包括肿瘤异质性的机器学习衍生指数在内的肿瘤相关预测因子与药物作用变化、治疗耐药或 OS 相关,有助于了解临床反应的变异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验