Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501, USA.
University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA.
Int J Biol Macromol. 2021 Jul 1;182:2130-2143. doi: 10.1016/j.ijbiomac.2021.05.168. Epub 2021 Jun 1.
For centuries, dietary ginger has been known for its antioxidant, anticancer, and antibacterial properties. In the current study, we examined the link between antibacterial properties of 7 dietary ginger phenolics (DGPs)-gingerenone A, 6-gingerol, 8-gingerol, 10-gingerol, paradol, 6-shogaol, and zingerone-and inhibition of bacterial ATP synthase. DGPs caused complete (100%) inhibition of wild-type Escherichia coli membrane-bound FF ATP synthase, but partial and variable (0%-87%) inhibition of phytochemical binding site mutant enzymes αR283D, αE284R, βV265Q, and γT273A. The mutant enzyme ATPase activity was 16-fold to 100-fold lower than that of the wild-type enzyme. The growth of wild-type, null, and mutant strains in the presence of the 7 DGPs were abrogated to variable degrees on limiting glucose and succinate media. DGPs-caused variable inhibitory profiles of wild-type and mutant ATP synthase confirm that residues of α-, β-, and γ-subunits are involved in the formation of phytochemical binding site. The variable degree of growth in the presence of DGPs also indicates the possibility of molecular targets other than ATP synthase. Our results establish that antibacterial properties of DGPs can be linked to the binding and inhibition of bacterial ATP synthase. Therefore, bacterial ATP synthase is a valuable molecular target for DGPs.
几个世纪以来,饮食中的姜因其抗氧化、抗癌和抗菌特性而为人所知。在目前的研究中,我们研究了 7 种饮食姜酚(DGPs)-gingerenone A、6-姜酚、8-姜酚、10-姜酚、paradol、6-姜烯酚和 zingerone 的抗菌特性与抑制细菌 ATP 合酶之间的联系。DGPs 完全(100%)抑制了野生型大肠杆菌膜结合 FF ATP 合酶,但对植物化学结合位点突变酶 αR283D、αE284R、βV265Q 和 γT273A 的抑制作用部分且可变(0%-87%)。突变酶 ATP 酶活性比野生型酶低 16 倍至 100 倍。在 7 种 DGPs 的存在下,野生型、缺失型和突变型菌株在限制葡萄糖和琥珀酸培养基中的生长均受到不同程度的抑制。DGPs 对野生型和突变型 ATP 合酶的可变抑制谱证实,α-、β-和γ-亚基的残基参与了植物化学结合位点的形成。在 DGPs 存在下生长的程度不同也表明除了 ATP 合酶之外,还存在其他分子靶标。我们的研究结果表明,DGPs 的抗菌特性可以与其与细菌 ATP 合酶的结合和抑制相关联。因此,细菌 ATP 合酶是 DGPs 的一个有价值的分子靶标。