Suppr超能文献

从生物树突中汲取灵感,赋能人工神经网络。

Drawing inspiration from biological dendrites to empower artificial neural networks.

机构信息

Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.

Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.

出版信息

Curr Opin Neurobiol. 2021 Oct;70:1-10. doi: 10.1016/j.conb.2021.04.007. Epub 2021 Jun 1.

Abstract

This article highlights specific features of biological neurons and their dendritic trees, whose adoption may help advance artificial neural networks used in various machine learning applications. Advancements could take the form of increased computational capabilities and/or reduced power consumption. Proposed features include dendritic anatomy, dendritic nonlinearities, and compartmentalized plasticity rules, all of which shape learning and information processing in biological networks. We discuss the computational benefits provided by these features in biological neurons and suggest ways to adopt them in artificial neurons in order to exploit the respective benefits in machine learning.

摘要

本文重点介绍生物神经元及其树突的特定特征,采用这些特征可能有助于推动在各种机器学习应用中使用的人工神经网络的发展。这些发展可能表现为计算能力的提高和/或功耗的降低。所提出的特征包括树突解剖结构、树突非线性和分区式可塑性规则,所有这些都塑造了生物网络中的学习和信息处理。我们讨论了生物神经元中这些特征所提供的计算优势,并提出了在人工神经元中采用它们的方法,以便在机器学习中利用各自的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验