Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.
Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 70013, Greece.
Curr Opin Neurobiol. 2021 Oct;70:1-10. doi: 10.1016/j.conb.2021.04.007. Epub 2021 Jun 1.
This article highlights specific features of biological neurons and their dendritic trees, whose adoption may help advance artificial neural networks used in various machine learning applications. Advancements could take the form of increased computational capabilities and/or reduced power consumption. Proposed features include dendritic anatomy, dendritic nonlinearities, and compartmentalized plasticity rules, all of which shape learning and information processing in biological networks. We discuss the computational benefits provided by these features in biological neurons and suggest ways to adopt them in artificial neurons in order to exploit the respective benefits in machine learning.
本文重点介绍生物神经元及其树突的特定特征,采用这些特征可能有助于推动在各种机器学习应用中使用的人工神经网络的发展。这些发展可能表现为计算能力的提高和/或功耗的降低。所提出的特征包括树突解剖结构、树突非线性和分区式可塑性规则,所有这些都塑造了生物网络中的学习和信息处理。我们讨论了生物神经元中这些特征所提供的计算优势,并提出了在人工神经元中采用它们的方法,以便在机器学习中利用各自的优势。