D'Agostino Simone, Moro Filippo, Torchet Tristan, Demirağ Yiğit, Grenouillet Laurent, Castellani Niccolò, Indiveri Giacomo, Vianello Elisa, Payvand Melika
Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
CEA-Leti, Université Grenoble Alpes, Grenoble, France.
Nat Commun. 2024 Apr 24;15(1):3446. doi: 10.1038/s41467-024-47764-w.
An increasing number of studies are highlighting the importance of spatial dendritic branching in pyramidal neurons in the neocortex for supporting non-linear computation through localized synaptic integration. In particular, dendritic branches play a key role in temporal signal processing and feature detection. This is accomplished thanks to coincidence detection (CD) mechanisms enabled by the presence of synaptic delays that align temporally disparate inputs for effective integration. Computational studies on spiking neural networks further highlight the significance of delays for achieving spatio-temporal pattern recognition with pure feed-forward neural networks, without the need of resorting to recurrent architectures. In this work, we present "DenRAM", the first realization of a feed-forward spiking neural network with dendritic compartments, implemented using analog electronic circuits integrated into a 130 nm technology node and coupled with Resistive Random Access Memory (RRAM) technology. DenRAM's dendritic circuits use RRAM devices to implement both delays and synaptic weights in the network. By configuring the RRAM devices to reproduce bio-realistic timescales, and by exploiting their heterogeneity we experimentally demonstrate DenRAM's ability to replicate synaptic delay profiles, and to efficiently implement CD for spatio-temporal pattern recognition. To validate the architecture, we conduct comprehensive system-level simulations on two representative temporal benchmarks, demonstrating DenRAM's resilience to analog hardware noise, and its superior accuracy compared to recurrent architectures with an equivalent number of parameters. DenRAM not only brings rich temporal processing capabilities to neuromorphic architectures, but also reduces the memory footprint of edge devices, warrants high accuracy on temporal benchmarks, and represents a significant step-forward in low-power real-time signal processing technologies.
越来越多的研究强调了新皮层中锥体神经元的空间树突分支对于通过局部突触整合支持非线性计算的重要性。特别是,树突分支在时间信号处理和特征检测中起着关键作用。这要归功于由突触延迟实现的巧合检测(CD)机制,这些延迟将时间上不同的输入对齐以便进行有效整合。对脉冲神经网络的计算研究进一步突出了延迟对于使用纯前馈神经网络实现时空模式识别的重要性,而无需借助循环架构。在这项工作中,我们展示了“DenRAM”,这是首个具有树突隔室的前馈脉冲神经网络的实现,它使用集成到130纳米技术节点的模拟电子电路并与电阻式随机存取存储器(RRAM)技术相结合来实现。DenRAM的树突电路使用RRAM器件在网络中实现延迟和突触权重。通过配置RRAM器件以重现生物现实的时间尺度,并利用其异质性,我们通过实验证明了DenRAM复制突触延迟分布以及有效实现用于时空模式识别的CD的能力。为了验证该架构,我们在两个具有代表性的时间基准上进行了全面的系统级模拟,展示了DenRAM对模拟硬件噪声的抗性,以及与具有相同参数数量的循环架构相比其更高的准确性。DenRAM不仅为神经形态架构带来了丰富的时间处理能力,还减少了边缘设备的内存占用,保证了在时间基准上的高精度,并且代表了低功耗实时信号处理技术的重大进步。