Bao Shouchun, Tu Mengyao, Huang Haowei, Wang Can, Chen Yiyu, Sun Baofen, Xu Binghui
Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
Shandong Vocational College of Science and Technology, Weifang 261053, China.
J Colloid Interface Sci. 2021 Nov;601:283-293. doi: 10.1016/j.jcis.2021.05.137. Epub 2021 May 26.
In this work, heterogeneous hematite (FeO) and magnetite (FeO) nanoparticles are jointly engineered on the external surface of multi-walled carbon nanotubes (CNTs) to construct a composite material (FeO@FeO/CNT). A simple one-step redox reaction is triggered in a hydrothermal reaction system containing functionalized CNT (FCNT) aqueous suspension and iron foils. Both FeO and FeO nanoparticles with controlled size are generated and well dispersed in the interconnected CNT framework. Controlled samples of FeO@FeO and FeO/CNT have also been prepared and used to investigate the synthetic mechanism and evaluate the lithium-ion storage performances. As an anodic active material for lithium-ion batteries, the FeO@FeO/CNT composite delivered a high reversible capacity of about 924 mAh·g for 200 continual charge/discharge cycles under a high current rate of 1000 mA·g. As a catalyst in a Fenton-like reaction for degrading methyl orange (MO) contaminant in waterbody, the FeO@FeO/CNT composite exhibited an attractive decomposition efficiency (99.5% decomposition within 60 min) and good stability. The beneficial factors contributing to the inspiring performances are discussed. The effective and scalable material design and synthesis method can be regarded to have good potential in other fields.
在这项工作中,在多壁碳纳米管(CNT)的外表面上共同制备了异质赤铁矿(FeO)和磁铁矿(FeO)纳米颗粒,以构建一种复合材料(FeO@FeO/CNT)。在含有功能化碳纳米管(FCNT)水悬浮液和铁箔的水热反应体系中引发了一个简单的一步氧化还原反应。生成了尺寸可控的FeO和FeO纳米颗粒,并将其很好地分散在相互连接的碳纳米管框架中。还制备了FeO@FeO和FeO/CNT的对照样品,用于研究合成机理并评估锂离子存储性能。作为锂离子电池的阳极活性材料,FeO@FeO/CNT复合材料在1000 mA·g的高电流速率下连续200次充/放电循环时提供了约924 mAh·g的高可逆容量。作为用于降解水体中甲基橙(MO)污染物的类芬顿反应的催化剂,FeO@FeO/CNT复合材料表现出了出色的分解效率(60分钟内分解率达99.5%)和良好的稳定性。讨论了促成这些优异性能的有利因素。这种有效且可扩展的材料设计与合成方法在其他领域具有良好的潜力。