New Materials R&D Center, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, Sichuan 621900, PR China.
Chemistry. 2013 Jul 22;19(30):9866-74. doi: 10.1002/chem.201300037. Epub 2013 Jun 12.
By using carbon nanotubes (CNTs) as a shape template and glucose as a carbon precursor and structure-directing agent, CNT@Fe3O4@C porous core/sheath coaxial nanocables have been synthesized by a simple one-pot hydrothermal process. Neither a surfactant/ligand nor a CNT pretreatment is needed in the synthetic process. A possible growth mechanism governing the formation of this nanostructure is discussed. When used as an anode material of lithium-ion batteries, the CNT@Fe3O4@C nanocables show significantly enhanced cycling performance, high rate capability, and high Coulombic efficiency compared with pure Fe2O3 particles and Fe3O4/CNT composites. The CNT@Fe3O4@C nanocables deliver a reversible capacity of 1290 mA h g(-1) after 80 cycles at a current density of 200 mA g(-1), and maintain a reversible capacity of 690 mA h g(-1) after 200 cycles at a current density of 2000 mA g(-1). The improved lithium storage behavior can be attributed to the synergistic effect of the high electronic conductivity support and the inner CNT/outer carbon buffering matrix.
通过使用碳纳米管(CNTs)作为形状模板以及葡萄糖作为碳前体和结构导向剂,我们通过简单的一步水热法合成了 CNT@Fe3O4@C 多孔核/鞘同轴纳米电缆。在合成过程中不需要表面活性剂/配体,也不需要对 CNT 进行预处理。讨论了控制这种纳米结构形成的可能生长机制。当用作锂离子电池的阳极材料时,与纯 Fe2O3 颗粒和 Fe3O4/CNT 复合材料相比,CNT@Fe3O4@C 纳米电缆具有显著增强的循环性能、高倍率性能和高库仑效率。在 200 mA g-1 的电流密度下循环 80 次后,CNT@Fe3O4@C 纳米电缆的可逆容量为 1290 mA h g-1,在 2000 mA g-1 的电流密度下循环 200 次后,仍保持 690 mA h g-1 的可逆容量。改进的锂存储性能可归因于高导电性支撑体和内部 CNT/外部碳缓冲基质的协同效应。