Old Dominion University, Frank Reidy Research Center for Bioelectrics, Bioelectronics Laboratory, Department of Electrical and Computer Engineering, Norfolk, VA, 23508, USA.
Old Dominion University, Frank Reidy Research Center for Bioelectrics, Bioelectronics Laboratory, Department of Electrical and Computer Engineering, Norfolk, VA, 23508, USA.
Anal Chim Acta. 2021 Jul 18;1169:338629. doi: 10.1016/j.aca.2021.338629. Epub 2021 May 11.
We designed and fabricated a novel label-free ultrasensitive tapered optical fiber (TOF) plasmonic biosensor that successfully detected a five panel of microRNAs with good selectivity. The biosensing platform integrates three different metallic nanoparticles: gold spherical nanoparticles (AuNPs), gold nanorods (AuNRs), and gold triangular nanoprisms (AuTNPs) laminated TOF to enhance the evanescent mode. The dip in the intensity profile of the transmission spectrum corresponded to the specific wavelength of the nanoparticle. The AuTNPs laminated TOF was found to exhibit the highest refractive index sensitivity and was therefore used to assay the panel of microRNAs. Single stranded DNA probes were self-assembled on the AuTNPs TOF plasmonic biosensors to achieve the highest sensitivity from the formation of hydrogen bonds between the ssDNAs and the target microRNAs. Experimentally, we observed that by measuring the spectral shifts, a limit of detection (LOD) between 103 aM and 261 aM for the panel of microRNAs can be achieved. Additionally, the ssDNA layer immobilized on the TOF plasmonic biosensor resulted in an extended dynamic range of 1 fM - 100 nM. In human serum solution, clinically relevant concentration of the panel of microRNAs were successfully detected with a LOD between 1.097 fM to 1.220 fM. This is the first report to demonstrate the applicability of our TOF plasmonic biosensor approach to detect a panel of microRNAs. This simple yet highly sensitive approach can provide a high-throughput and scalable sensor for detecting and quantifying large arrays of microRNAs, thereby expanding the applications of biosensors.
我们设计并制造了一种新颖的无标记超灵敏锥形光纤(TOF)等离子体生物传感器,该传感器成功地检测了五种 microRNA 混合物,具有良好的选择性。该生物传感平台集成了三种不同的金属纳米粒子:金球形纳米粒子(AuNPs)、金纳米棒(AuNRs)和金三角纳米棱柱(AuTNPs)层压 TOF 以增强消逝模。透射光谱的强度轮廓下降对应于纳米粒子的特定波长。发现层压 TOF 的 AuTNPs 表现出最高的折射率灵敏度,因此用于检测 microRNA 混合物。单链 DNA 探针在 AuTNPs TOF 等离子体生物传感器上自组装,以通过 ssDNA 和靶标 microRNA 之间氢键的形成实现最高灵敏度。实验上,我们观察到通过测量光谱位移,可以实现对 microRNA 混合物的检测限(LOD)在 103 aM 和 261 aM 之间。此外,固定在 TOF 等离子体生物传感器上的 ssDNA 层导致动态范围从 1 fM 扩展到 100 nM。在人血清溶液中,成功地检测到临床相关浓度的 microRNA 混合物,检测限(LOD)在 1.097 fM 至 1.220 fM 之间。这是第一个报告证明我们的 TOF 等离子体生物传感器方法适用于检测 microRNA 混合物。这种简单但高度灵敏的方法可以为检测和定量大量 microRNA 提供高通量和可扩展的传感器,从而扩展生物传感器的应用。