Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
Trends Genet. 2021 Sep;37(9):830-845. doi: 10.1016/j.tig.2021.04.011. Epub 2021 Jun 1.
A growing number of known species possess a remarkable characteristic - extreme resistance to the effects of ionizing radiation (IR). This review examines our current understanding of how organisms can adapt to and survive exposure to IR, one of the most toxic stressors known. The study of natural extremophiles such as Deinococcus radiodurans has revealed much. However, the evolution of Deinococcus was not driven by IR. Another approach, pioneered by Evelyn Witkin in 1946, is to utilize experimental evolution. Contributions to the IR-resistance phenotype affect multiple aspects of cell physiology, including DNA repair, removal of reactive oxygen species, the structure and packaging of DNA and the cell itself, and repair of iron-sulfur centers. Based on progress to date, we overview the diversity of mechanisms that can contribute to biological IR resistance arising as a result of either natural or experimental evolution.
越来越多的已知物种具有一个显著的特征——对电离辐射 (IR) 的影响具有极强的抵抗力。本综述考察了我们目前对生物体如何适应和存活于已知最具毒性的应激源之一 IR 暴露的理解。对像 Deinococcus radiodurans 这样的天然耐极端微生物的研究揭示了很多。然而,Deinococcus 的进化并不是由 IR 驱动的。另一种方法是由伊夫林·威特金 (Evelyn Witkin) 于 1946 年首创的,即利用实验进化。对 IR 抗性表型的贡献影响细胞生理学的多个方面,包括 DNA 修复、清除活性氧、DNA 结构和包装以及细胞本身,以及铁硫中心的修复。基于迄今为止的进展,我们概述了可以促进自然或实验进化产生的生物 IR 抗性的多种机制。