Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Duke Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA.
J Bacteriol. 2019 Mar 26;201(8). doi: 10.1128/JB.00784-18. Print 2019 Apr 15.
In previous work (D. R. Harris et al., J Bacteriol 191:5240-5252, 2009, https://doi.org/10.1128/JB.00502-09; B. T. Byrne et al., Elife 3:e01322, 2014, https://doi.org/10.7554/eLife.01322), we demonstrated that could acquire substantial levels of resistance to ionizing radiation (IR) via directed evolution. Major phenotypic contributions involved adaptation of organic systems for DNA repair. We have now undertaken an extended effort to generate populations that are as resistant to IR as After an initial 50 cycles of selection using high-energy electron beam IR, four replicate populations exhibit major increases in IR resistance but have not yet reached IR resistance equivalent to Regular deep sequencing reveals complex evolutionary patterns with abundant clonal interference. Prominent IR resistance mechanisms involve novel adaptations to DNA repair systems and alterations in RNA polymerase. Adaptation is highly specialized to resist IR exposure, since isolates from the evolved populations exhibit highly variable patterns of resistance to other forms of DNA damage. Sequenced isolates from the populations possess between 184 and 280 mutations. IR resistance in one isolate, IR9-50-1, is derived largely from four novel mutations affecting DNA and RNA metabolism: RecD A90E, RecN K429Q, and RpoB S72N/RpoC K1172I. Additional mechanisms of IR resistance are evident. Some bacterial species exhibit astonishing resistance to ionizing radiation, with being the archetype. As natural IR sources rarely exceed mGy levels, the capacity of to survive 5,000 Gy has been attributed to desiccation resistance. To understand the molecular basis of true extreme IR resistance, we are using experimental evolution to generate strains of with IR resistance levels comparable to Experimental evolution has previously generated moderate radioresistance for multiple bacterial species. However, these efforts could not take advantage of modern genomic sequencing technologies. In this report, we examine four replicate bacterial populations after 50 selection cycles. Genomic sequencing allows us to follow the genesis of mutations in populations throughout selection. Novel mutations affecting genes encoding DNA repair proteins and RNA polymerase enhance radioresistance. However, more contributors are apparent.
在之前的工作中(D.R. Harris 等人,J Bacteriol 191:5240-5252, 2009, https://doi.org/10.1128/JB.00502-09;B.T. Byrne 等人,Elife 3:e01322, 2014, https://doi.org/10.7554/eLife.01322),我们通过定向进化证明 可以通过有机系统适应来获得对电离辐射(IR)的实质性抗性。主要表型贡献涉及 DNA 修复的有机系统的适应。现在,我们已经进行了一项扩展的努力,以产生与 一样对 IR 具有抗性的 群体。在使用高能电子束 IR 进行 50 个循环的初始选择后,四个重复的群体表现出对 IR 抗性的显著增加,但尚未达到与 相当的 IR 抗性。常规深度测序揭示了复杂的进化模式,存在大量克隆干扰。突出的 IR 抗性机制涉及 DNA 修复系统的新适应和 RNA 聚合酶的改变。适应是高度专业化的,以抵抗 IR 暴露,因为来自进化群体的分离株对其他形式的 DNA 损伤表现出高度可变的抗性模式。从群体中分离的测序分离株具有 184 到 280 个突变。一个分离株 IR9-50-1 的 IR 抗性主要来自四个影响 DNA 和 RNA 代谢的新突变:RecD A90E、RecN K429Q 和 RpoB S72N/RpoC K1172I。IR 抗性的其他机制也很明显。一些细菌物种对电离辐射表现出惊人的抗性,而 则是典型代表。由于天然 IR 源很少超过 mGy 水平,因此将 能够在 5000 Gy 下生存归因于干燥耐受性。为了了解真正的极端 IR 抗性的分子基础,我们正在利用实验进化来产生与 相当的 IR 抗性水平的 菌株。实验进化先前为多种细菌物种产生了中度放射性抗性。然而,这些努力无法利用现代基因组测序技术。在本报告中,我们在 50 次选择循环后检查了四个重复的细菌群体。基因组测序使我们能够在整个选择过程中跟踪群体中突变的起源。影响 DNA 修复蛋白和 RNA 聚合酶编码基因的新突变增强了放射性抗性。然而,更明显的是更多的贡献者。