College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China.
Traffic. 2021 Aug;22(8):258-273. doi: 10.1111/tra.12805. Epub 2021 Jun 16.
Mitochondria play important roles in energy generation and homeostasis maintenance in eukaryotic cells. The damaged or superfluous mitochondria can be nonselectively or selectively removed through the autophagy/lysosome pathway, which was referred as mitophagy. According to the molecular machinery for degrading mitochondria, the selectively removed mitochondria can occur through macromitophagy or micromitophagy. In this study, we show that the endosomal sorting complex required for transport III (ESCRT-III) in budding yeast regulates macromitophagy induced by nitrogen starvation, but not by the post-logarithmic phase growth in lactate medium by monitoring a mitochondrial marker, Om45. Firstly, loss of ESCRT-III subunit Snf7 or Vps4-Vta1 complex subunit Vps4, two representative subunits of the ESCRT complex, suppresses the delivery and degradation of Om45-GFP to vacuoles. Secondly, we show that the mitochondrial marker Om45 and mitophagy receptor Atg32 accumulate on autophagosomes marked with Atg8 (mitophagosomes, MPs) in ESCRT mutants. Moreover, the protease-protection assay indicates that Snf7 and Vps4 are involved in MP closure. Finally, Snf7 interacts with Atg11, which was detected by two ways, glutathione-S-transferase (GST) pulldown and bimolecular fluorescence complementation (BiFC) assay, and this BiFC interaction happens on mitochondrial reticulum. Therefore, we proposed that the ESCRT-III machinery mediates nitrogen starvation-induced macromitophagy by the interaction between Snf7 and Atg11 so that Snf7 is recruited to Atg32-marked MPs by the known Atg11-Atg32 interaction to seal them. These results reveal that the ESCRT-III complex plays a new role in yeast on macromitophagy.
线粒体在真核细胞的能量生成和动态平衡维持中发挥重要作用。受损或多余的线粒体可以通过自噬/溶酶体途径非选择性或选择性地被清除,这种途径被称为线粒体自噬。根据降解线粒体的分子机制,被选择性清除的线粒体可以通过巨自噬或微自噬发生。在这项研究中,我们通过监测线粒体标记物 Om45,表明芽殖酵母中的内体分选复合物需要运输 III(ESCRT-III)在氮饥饿诱导的巨自噬中起作用,但在乳酸培养基中的对数后生长阶段不起作用。首先,ESCRT 复合物的两个代表性亚基 Snf7 或 Vps4-Vta1 复合物亚基 Vps4 的缺失会抑制 Om45-GFP 递送到液泡中的传递和降解。其次,我们表明,线粒体标记物 Om45 和自噬受体 Atg32 在 ESCRT 突变体中积累在带有 Atg8(自噬体, MPs)的自噬体上。此外,蛋白酶保护实验表明 Snf7 和 Vps4 参与 MPs 的封闭。最后,Snf7 与 Atg11 相互作用,通过谷胱甘肽 S-转移酶(GST)下拉和双分子荧光互补(BiFC)实验检测到这种相互作用,并且这种 BiFC 相互作用发生在线粒体网。因此,我们提出 ESCRT-III 机制通过 Snf7 和 Atg11 之间的相互作用介导氮饥饿诱导的巨自噬,从而使 Snf7 通过已知的 Atg11-Atg32 相互作用被招募到 Atg32 标记的 MPs 上以封闭它们。这些结果表明,ESCRT-III 复合物在酵母的巨自噬中发挥新的作用。