Suppr超能文献

Bayesian explanatory additive IRT models.

作者信息

Mair Patrick, Gruber Kathrin

机构信息

Harvard University, Cambridge, Massachusetts, USA.

Erasmus University Rotterdam, Netherlands.

出版信息

Br J Math Stat Psychol. 2022 Feb;75(1):59-87. doi: 10.1111/bmsp.12245. Epub 2021 Jun 5.

Abstract

In this article we extend the framework of explanatory mixed IRT models to a more general class called explanatory additive IRT models. We do this by augmenting the linear predictors in terms of smooth functions. This development offers many new modeling options such as the inclusion of nonlinear covariate effects, the specification of various temporal and spatial dependency patterns, and parameter partitioning across covariates. We use integrated nested Laplace approximation (INLA) for accurate and computationally efficient estimation of the parameters. Uninformative, weakly informative, and informative prior settings for the hyperparameters are discussed. Running time experiments and Monte Carlo parameter recovery simulations are performed in order to study the accuracy and computational efficiency of INLA when applied to the proposed explanatory additive IRT model class. Using a real-life dataset, a variety of application scenarios is explored, and the results are compared with classical maximum likelihood estimation when possible. R code is included in the supplemental materials to allow readers to fully reproduce the examples computed in the paper.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验