Suppr超能文献

比较INLA和OpenBUGS在疾病地图分层泊松模型中的应用

Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping.

作者信息

Carroll R, Lawson A B, Faes C, Kirby R S, Aregay M, Watjou K

机构信息

Department of Public Health, Medical University of South Carolina, 135 Cannon St, Charleston, SC 29425, USA.

Department of Public Health, Medical University of South Carolina, 135 Cannon St, Charleston, SC 29425, USA.

出版信息

Spat Spatiotemporal Epidemiol. 2015 Jul-Oct;14-15:45-54. doi: 10.1016/j.sste.2015.08.001. Epub 2015 Aug 11.

Abstract

The recently developed R package INLA (Integrated Nested Laplace Approximation) is becoming a more widely used package for Bayesian inference. The INLA software has been promoted as a fast alternative to MCMC for disease mapping applications. Here, we compare the INLA package to the MCMC approach by way of the BRugs package in R, which calls OpenBUGS. We focus on the Poisson data model commonly used for disease mapping. Ultimately, INLA is a computationally efficient way of implementing Bayesian methods and returns nearly identical estimates for fixed parameters in comparison to OpenBUGS, but falls short in recovering the true estimates for the random effects, their precisions, and model goodness of fit measures under the default settings. We assumed default settings for ground truth parameters, and through altering these default settings in our simulation study, we were able to recover estimates comparable to those produced in OpenBUGS under the same assumptions.

摘要

最近开发的R软件包INLA(集成嵌套拉普拉斯近似)正成为贝叶斯推理中使用越来越广泛的软件包。INLA软件已被推广为疾病映射应用中MCMC的快速替代方法。在这里,我们通过R语言中的BRugs软件包(该软件包调用OpenBUGS)将INLA软件包与MCMC方法进行比较。我们专注于疾病映射中常用的泊松数据模型。最终,INLA是实现贝叶斯方法的一种计算高效的方式,与OpenBUGS相比,它对固定参数的估计几乎相同,但在默认设置下,它在恢复随机效应的真实估计值、它们的精度以及模型拟合优度指标方面存在不足。我们假设了真实参数的默认设置,并通过在模拟研究中改变这些默认设置,我们能够在相同假设下恢复与OpenBUGS产生的估计值相当的估计值。

相似文献

1
Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease mapping.比较INLA和OpenBUGS在疾病地图分层泊松模型中的应用
Spat Spatiotemporal Epidemiol. 2015 Jul-Oct;14-15:45-54. doi: 10.1016/j.sste.2015.08.001. Epub 2015 Aug 11.
2
Spatial and spatio-temporal models with R-INLA.使用R-INLA的空间和时空模型。
Spat Spatiotemporal Epidemiol. 2013 Dec;7:39-55. doi: 10.1016/j.sste.2013.07.003.
3
Spatial and spatio-temporal models with R-INLA.使用R-INLA的空间和时空模型。
Spat Spatiotemporal Epidemiol. 2013 Mar;4:33-49. doi: 10.1016/j.sste.2012.12.001. Epub 2013 Jan 2.

引用本文的文献

本文引用的文献

1
Spatial and spatio-temporal models with R-INLA.使用R-INLA的空间和时空模型。
Spat Spatiotemporal Epidemiol. 2013 Mar;4:33-49. doi: 10.1016/j.sste.2012.12.001. Epub 2013 Jan 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验