Wang Xiao-Feng, Li Yingxing
Department of Quantitative Health Sciences/Biostatistics Section, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
Biom J. 2014 Jul;56(4):662-77. doi: 10.1002/bimj.201300003. Epub 2014 Mar 25.
Diffusion tensor imaging (DTI) is a quantitative magnetic resonance imaging technique that measures the three-dimensional diffusion of water molecules within tissue through the application of multiple diffusion gradients. This technique is rapidly increasing in popularity for studying white matter properties and structural connectivity in the living human brain. One of the major outcomes derived from the DTI process is known as fractional anisotropy, a continuous measure restricted on the interval (0,1). Motivated from a longitudinal DTI study of multiple sclerosis, we use a beta semiparametric-mixed regression model for the neuroimaging data. This work extends the generalized additive model methodology with beta distribution family and random effects. We describe two estimation methods with penalized splines, which are formalized under a Bayesian inferential perspective. The first one is carried out by Markov chain Monte Carlo (MCMC) simulations while the second one uses a relatively new technique called integrated nested Laplace approximation (INLA). Simulations and the neuroimaging data analysis show that the estimates obtained from both approaches are stable and similar, while the INLA method provides an efficient alternative to the computationally expensive MCMC method.
扩散张量成像(DTI)是一种定量磁共振成像技术,通过应用多个扩散梯度来测量水分子在组织内的三维扩散。这项技术在研究活体人类大脑中的白质特性和结构连接性方面正迅速受到欢迎。DTI过程的一个主要结果是分数各向异性,它是一种限制在区间(0,1)内的连续测量值。受一项关于多发性硬化症的纵向DTI研究的启发,我们对神经成像数据使用了β半参数混合回归模型。这项工作扩展了具有β分布族和随机效应的广义相加模型方法。我们描述了两种使用惩罚样条的估计方法,它们在贝叶斯推断的视角下被形式化。第一种方法通过马尔可夫链蒙特卡罗(MCMC)模拟来实现,而第二种方法使用一种相对较新的技术,称为集成嵌套拉普拉斯近似(INLA)。模拟和神经成像数据分析表明,从这两种方法获得的估计值是稳定且相似的,而INLA方法为计算成本高昂的MCMC方法提供了一种有效的替代方案。