Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India.
Plant Cell Rep. 2021 Nov;40(11):2173-2190. doi: 10.1007/s00299-021-02725-1. Epub 2021 Jun 5.
Double transgenic tomato developed by AtDREB1A and BcZAT12 genes pyramiding showed significant drought tolerance by reducing oxidative stress with enhanced yield. Although a large number of efforts have been made by different researchers to develop abiotic stress tolerance tomato for improving yield using single gene, however, no reports are available which targets AtDREB1 and BcZAT12 genes together. Hence, in the present study, double transgenic plants were developed using AtDREB1 and BcZAT12 genes to improve yield potential with better drought tolerance. Double transgenic (DZ1-DZ5) tomato lines showed enhanced drought tolerance than their counterpart non-transgenic and single transgenic plants at 0, 07, 14, and 21 days of water deficit, respectively. Double transgenic plants showed increased activity of antioxidant enzymes, like catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and guaiacol peroxidase (POD), and accumulation of non-enzymatic antioxidants like ascorbic acid, glutathione as compared to non-transgenic and single transgenic. Additionally, the transcript analysis of antioxidant enzymes revealed the increased level of gene expression in double transgenic tomato lines. Developed double-transgenic tomato plants co-over-expressing both genes exhibited more enzymatic and non-enzymatic anti-oxidative activities as compared to the non-transgenic and single transgenic control, respectively. This is the preliminary report in tomato, which forms the basis for a multigene transgenic approach to cope with drought stress.
双转基因番茄通过 AtDREB1A 和 BcZAT12 基因的级联表达,减少氧化应激,提高产量,表现出显著的耐旱性。尽管不同研究人员已经做出了大量努力,通过使用单个基因来培育抗非生物胁迫的番茄以提高产量,但是,没有针对 AtDREB1 和 BcZAT12 基因的共同目标的报告。因此,在本研究中,使用 AtDREB1 和 BcZAT12 基因来开发双转基因植物,以提高产量潜力并提高耐旱性。与非转基因和单转基因植物相比,双转基因(DZ1-DZ5)番茄系在 0、07、14 和 21 天水分亏缺时表现出更强的耐旱性。双转基因植物表现出更高的抗氧化酶活性,如过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、谷胱甘肽还原酶(GR)、抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)、单脱氢抗坏血酸还原酶(MDHAR)和愈创木酚过氧化物酶(POD),以及非酶抗氧化剂如抗坏血酸、谷胱甘肽的积累,与非转基因和单转基因相比。此外,抗氧化酶的转录分析显示,双转基因番茄系中的基因表达水平增加。与非转基因和单转基因对照相比,共表达这两个基因的双转基因番茄植物表现出更高的酶和非酶抗氧化活性。这是番茄中的初步报告,为应对干旱胁迫的多基因转基因方法奠定了基础。